1.8 Tutorial 6 Semester I, 2024: Modules and modules over a PID

1. Let M be an R-module. Show that if $r \in R$ and $m \in M$ then

$$
0 m=0, \quad r 0=0, \quad \text { and } \quad(-r) m=-(r m)=r(-m)
$$

2. (a) Let $N=\left\{(x, y, z) \in \mathbb{Z}^{3} \mid x+y+z=0\right\}$. Is N a free \mathbb{Z}-module? If so, find a basis.
(b) Show that \mathbb{Q} is not free as a \mathbb{Z}-module (remember the basis may be infinite).
3. (a) Let V be a vector space over a field k. Let $T: V \rightarrow V$ be a linear transformation. Show that defining

$$
\left(\sum_{i} a_{i} x^{i}\right) \cdot v=\sum_{i} a_{i} T^{i}(v) \quad \text { makes } V \text { into a } k[x] \text {-module. }
$$

(b) Find an example of a vector space V, together with two linear transformations T and S, such that there does not exist a $k[x, y]$-module structure on V with such that if $v \in V$ then $x \cdot v=T(v)$ and $y \cdot v=S(v)$ for all $v \in V$.
4. Let M be an R-module and N be a submodule of M. Give (with proof) a natural bijection \{submodules of $M / N \leftrightarrow$ submodules of M containing N.
5. Let R be a principal ideal domain, $p \in R$ an irreducible element, $k \in \mathbb{Z}_{\geq 1}$, let M be the R-module

$$
M=R /\left(p^{k}\right) \quad \text { and let } \quad N=p^{k-1} M:=\left\{p^{k-1} m \mid m \in M\right\}
$$

(a) Show that N is a submodule of M.
(b) Show that N is contained in every non-zero submodule of M.
6. An R-module iss cyclic if it has a generating set with one element.
(a) Is a quotient of a cyclic module necessarily cyclic?
(b) Is a submodule of a cyclic module necessarily cyclic?
7. Let V be the $\mathbb{Z}[i]$-module $(\mathbb{Z}[i])^{2} / N$ where

$$
N=\operatorname{span}_{\mathbb{Z}[i]}\{(1+i, 2-i),(3,5 i)\}
$$

Write V as a direct sum of cyclic modules.
8. Let

$$
A=\left(\begin{array}{llll}
3 & 8 & 7 & 9 \\
2 & 4 & 6 & 6 \\
1 & 2 & 1 & 1
\end{array}\right)
$$

(a) Find the Smith Normal form (over \mathbb{Z}) of the matrix A.
(b) If M is a \mathbb{Z}-module with presentation matrix A, then show that $M \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$.
(c) If N is a \mathbb{Q}-module with presentation matrix A, identify N.
9. Let V be a two dimensional vector space over \mathbb{Q} having basis $\left\{v_{1}, v_{2}\right\}$. Let T be the linear operator on V defined by

$$
T\left(v_{1}\right)=3 v_{1}-v_{2} \quad \text { and } \quad T\left(v_{2}\right)=2 v_{2}
$$

Recall that V together with T can be identified with a $\mathbb{Q}[t]$-module by defining $t u=T(u)$ for $u \in V$.
(a) Show that the subspace $U=\left\{a v_{2} \mid a \in \mathbb{Q}\right\}$ of V is a $\mathbb{Q}[t]$-submodule of V.
(b) Let $f=t^{2}+2 t-3$. Express $f v_{1}$ and $f v_{2}$ as linear combinations of v_{1} and v_{2}.
10. (a) Let R be a ring and let M be an R-module. Suppose that U and V are two submodules of M. Show that

$$
M \cong U \oplus V \quad \text { if and only if } \quad U \cap V=\{0\} \text { and } U+V=M
$$

(b) Show that the \mathbb{Z}-module $\mathbb{Z} / p^{n} \mathbb{Z}$, where p is a prime and n a positive integer, is not a direct sum of two non-zero \mathbb{Z}-modules.
11. Up to isomorphism, how many abelian groups of order 96 are there?
12. Find an isomorphic direct sum of cyclic groups, where V is the abelian group generated by x, y, z with relations

$$
3 x+2 y+8 z=0 \quad \text { and } \quad 2 x+4 z=0
$$

13. Find an isomorphic direct sum of cyclic groups, where V is the abelian group generated by x, y, z with relations

$$
x+y=0, \quad 2 x=0, \quad 4 x+2 z=0, \quad 4 x+2 y+2 z=0
$$

14. Find an isomorphic direct sum of cyclic groups, where V is the abelian group generated by x, y, z with relations

$$
2 x+y=0, \quad \text { and } \quad x-y+3 z=0
$$

15. Find an isomorphic direct sum of cyclic groups, where V is the abelian group generated by x, y, z with relations

$$
4 x+y+2 z=0, \quad 5 x+2 y+z=0, \quad \text { and } \quad 6 y-6 z=0
$$

