MAST30005 ALGEBRA
 SEMESTER 1, 2024
 PRACTICE CLASS 6 NEW

A ring in this tutorial will always mean a commutative unital ring.

Posets

Definition. Let (A, \leq) be a poset. By abuse of privilege of laziness we shall use A for both the poset and the set. We say A is totally ordered if for all $a, b \in A$, we have $a \leq b$ or $b \leq a$. We shall say A is well-ordered if any nonempty subset $U \subseteq A$ has a least element (an element x of a subset $V \subseteq A$ is least if $x \leq y$ for all $y \in V)$.
(1) Give an example (if possible) of a poset that is
(a) Not totally ordered.
(b) Well ordered.
(c) Well ordered but not totally ordered.
(2) Prove any set can be well-ordered. More precisely, let A be a set. Show there is a partial order \leq on A such that (A, \subseteq) is well-ordered.
(3) Give an example of a subset of \mathbb{Q} that has no supremum.
(4) Give an example of a subset of \mathbb{R} that has no supremum.

Definition. Let A be a ring, and let I, J be ideals of A. We define the product of I and J, denoted $I J$ to be the set

$$
I J:=\left\{\sum_{i=1}^{r} x_{i} y_{i} \mid x_{i} \in I, y_{i} \in J\right\}
$$

or in english, everything that can be written as a finite sum of something in I times something in J.
(1) Prove $I J$ is an ideal.
(2) Let $I=3 \mathbb{Z}$ and $J=15 \mathbb{Z}$. Find $I J$.
(3) Suppose I and J are both principal. What can you say about $I J$?
(4) Show that $I J \subseteq I \cap J$. Give a counterexample to the converse. Can you give a necessary and sufficient condition for equality to occur in \mathbb{Z} ?

Finiteness Conditions

Recall that a module M over a ring A is noetherian (resp. artinian) if it satisfies ACC (resp. DCC).
(5) Let A be a Noetherian ring and let M be a finitely generated module over A. Show that M is also noetherian (Hint: prove it first for M free).
(6) Let A be a ring and suppose every finitely generated A-module is noetherian. Show that A is a noetherian ring.
(7) If we replace noetherian with artinian in the above two questions, does it work?

Principal Ideals

Notation: if A is a ring and f_{1}, \ldots, f_{r} are elements of A, we will abuse our privilege to laziness by writing $A /\left(f_{1}, \ldots, f_{r}\right)$ to mean $A /\left(f_{1}, \ldots, f_{r}\right) A$.
(8) Show $\mathbb{Z}[\sqrt{-5}]$ is not a PID directly by producing an ideal that's not principal.
(9) Do the same with $\mathbb{Z}[\sqrt{5}]$ and with $\mathbb{C}[x, y] /\left(y^{2}-x^{3}\right)$.
(10) As we showed in class, we already know $\mathbb{Z}[\sqrt{-5}]$ is not a PID since 6 has two factorisations into irreducibles. However, write the ideal $6 \mathbb{Z}[\sqrt{-5}]$ as the product of two prime ideals. Do you think this factorisation (into prime ideals) unique?
(11) Try write $x \mathbb{C}[x, y] /\left(y^{2}-x^{3}\right)$ as a product of prime ideals. Do the same with $(1+$ $\sqrt{5}) \mathbb{Z}[\sqrt{5}]$.
(12) Let $A=\mathbb{C}[x, y] /\left(y^{2}-x^{3}+x\right)$. Show that A is not a PID by finding an ideal that's not principal. However, factor taht ideal into primes.
(13) Let $A=\mathbb{C}[x, y] /\left(y^{2}-x^{3}+x\right)$ again. We will show that A is also not a UFD as follows:
(a) Consider $\mathbb{C}[x]$, which is also a subring of A. Show there is an automorphism $\sigma: A \rightarrow A$ that leaves $\mathbb{C}[x]$ fixed but sends y to $-y$.
(b) We define a norm $N: A \rightarrow \mathbb{C}[x]$ by setting $N(a)=a \sigma(a)$. Show that $N(a)$ actually ends up in $\mathbb{C}[x]$, and use it to find the units (invertible elements) in A.
(c) Imitate the homework problem in Lecture 18 to show that x, y are irreducible in A. Use this to show that A is not a UFD.
(14) Give an example of a PID with one maximal ideal. How about two? How about seventeen?

Miscellaneous Rings/Modules questions

Here are some random ring questions that I'm not sure which tutorial to put in.
(1) Let R be a ring and let M be an R-module. Suppose that U and V are two submodules of M. Show that

$$
M \cong U \oplus V \quad \text { if and only if } \quad U \cap V=\{0\} \text { and } U+V=M
$$

(Hint: it's not true. Find a counterexample).
(2) Let A be a ring. For any ring R, we will let $\operatorname{Hom}(R, A)$ denote the set of ring homomorphisms from R to A. Calculate the following:
(a) $\operatorname{Hom}(\mathbb{Z}, A)$.
(b) $\operatorname{Hom}(\mathbb{Z}[x], A)$.
(c) $\operatorname{Hom}\left(\mathbb{Z}[x] /\left(x^{2}-1\right), A\right)$.
(d) $\operatorname{Hom}(\mathbb{Z}[x, y], A)$.
(e) $\operatorname{Hom}(\mathbb{Z}[x, y] /(x y-1), A)$.
(f) $\operatorname{Hom}(\mathbb{Z}[a, b, c, d, e] /(e(a d-b c)-1), A)$.
(3) Let p be a prime number and let $A \in \mathrm{GL}_{p-2}(\mathbb{Q})$ satisfy $A^{p}=1$. Show that $A=1$.

