1.7 Tutorial 5 Semester I, 2024: Factorization in \mathbb{Z} and $\mathbb{F}[x]$

- 1. Let I be an ideal of \mathbb{Z} . Let $m \in \mathbb{Z}_{>0}$ be minimal such that $m \in I$. Show that $m\mathbb{Z} = I$.
- 2. Show that if I is an ideal of \mathbb{Z} then there exists $m \in \mathbb{Z}_{>0}$ such that $m\mathbb{Z} = I$.
- 3. Show that $\mathbb{Z}_{>0}$ indexes the ideals of \mathbb{Z} .
- 4. Show that $p \in \mathbb{Z}_{>0}$ is prime if and only if there does not exist $c \in \mathbb{Z}_{>1}$ such that $p\mathbb{Z} \subsetneq c\mathbb{Z} \subsetneq \mathbb{Z}$.
- 5. Let $m, n \in \mathbb{Z}_{>0}$. Show that n is divisible by m if and only if $n\mathbb{Z} \subseteq m\mathbb{Z}$.
- 6. Show that $p \in \mathbb{Z}_{>0}$ is prime if and only if $\mathbb{Z}/p\mathbb{Z}$ is a simple \mathbb{Z} -module.
- 7. Let $m, n, \ell \in \mathbb{Z}_{>0}$ and assume that $m\ell = n$. Show that ℓ is prime if and only if $m\mathbb{Z}/n\mathbb{Z}$ is a simple \mathbb{Z} -module.
- 8. Let $n \in \mathbb{Z}_{>1}$. Show that there does not exist an infinite sequence $n > m_1 > m_2 > \cdots > 1$ such that $n\mathbb{Z} \subsetneq m_1\mathbb{Z} \subsetneq m_2\mathbb{Z} \subsetneq \cdots \subsetneq \mathbb{Z}$.
- 9. Show that if M is a \mathbb{Z} -module and $N \subseteq M$ is a \mathbb{Z} -submodule of M and M/N is not simple then there exists a \mathbb{Z} -module M' such that $N \subsetneq M' \subsetneq M$.
- 10. Assume that $k \in \mathbb{Z}_{>0}$ and $p_1, \ldots, p_k \in \mathbb{Z}_{>0}$ are prime. Let

$$n = p_1 \cdots p_k, \quad m_1 = p_2 \cdots p_k, \quad \dots, \quad m_{k-1} = p_k.$$

Show that $n\mathbb{Z} \subseteq m_1\mathbb{Z} \subseteq \cdots \subseteq m_{k-1}\mathbb{Z} \subseteq \mathbb{Z}$ and that Let $m_0 = n$ and $m_k = 1$. Show that if $j \in \{1, \ldots, k\}$ then $m_j\mathbb{Z}/m_{j-1}\mathbb{Z}$ is a simple \mathbb{Z} -module.

- 11. Let $n \in \mathbb{Z}_{>0}$. Show that there exist $k \in \mathbb{Z}_{>0}$ and primes $p_1, \ldots, p_k \in \mathbb{Z}_{>0}$ such that $n = p_1 \cdots p_k$.
- 12. (Eisenstein criterion) Let f(x) = a_nxⁿ + a_{n-1}xⁿ⁻¹ + · · · + a₀ ∈ Z[x] and let p ∈ Z_{>0} be a prime integer.
 Assume that

Assume that

- (a) p does not divide a_n ,
- (b) p divides each of $a_{n-1}, a_{n-2}, \ldots, a_0$,
- (c) p^2 does not divide a_0 .

Show that f(x) is irreducible in $\mathbb{Q}[x]$.

13. Let $f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ and let p be a prime integer such that p does not divide a_n . Let $\pi_p: \qquad \mathbb{Z}[x] \longrightarrow \qquad \mathbb{Z}/p\mathbb{Z}[x]$ where \bar{z} denotes a need z.

$$: \quad \mathbb{Z}[x] \quad \to \quad \mathbb{Z}/p\mathbb{Z}[x] \\ a_n x^n + \dots + a_0 \quad \mapsto \quad \bar{a}_n x^n + \dots + \bar{a}_0, \quad \text{where } \bar{a} \text{ denotes } a \mod p.$$

Show that if $\pi_p(f(x))$ is irreducible in $\mathbb{Z}/p\mathbb{Z}[x]$ then f(x) is irreducible in $\mathbb{Q}[x]$.

- 14. Show that if $f(x) \in \mathbb{Z}[x]$, deg (f(x)) > 0, and f(x) is irreducible in $\mathbb{Z}[x]$ then f(x) is irreducible in $\mathbb{Q}[x]$.
- 15. Let $f(x) \in \mathbb{Z}[x]$. Show that f(x) is irreducible in $\mathbb{Z}[x]$ if and only if

either $f(x) = \pm p$, where p is a prime integer, or f(x) is a primitive polynomial and f(x) is irreducible in $\mathbb{Q}[x]$.