1.7 Tutorial 5 Semester I, 2024: Factorization in \mathbb{Z} and $\mathbb{F}[x]$

1. Let I be an ideal of \mathbb{Z}. Let $m \in \mathbb{Z}_{>0}$ be minimal such that $m \in I$. Show that $m \mathbb{Z}=I$.
2. Show that if I is an ideal of \mathbb{Z} then there exists $m \in \mathbb{Z}_{>0}$ such that $m \mathbb{Z}=I$.
3. Show that $\mathbb{Z}_{>0}$ indexes the ideals of \mathbb{Z}.
4. Show that $p \in \mathbb{Z}_{>0}$ is prime if and only if there does not exist $c \in \mathbb{Z}_{>1}$ such that $p \mathbb{Z} \subsetneq c \mathbb{Z} \subsetneq \mathbb{Z}$.
5. Let $m, n \in \mathbb{Z}_{>0}$. Show that n is divisible by m if and only if $n \mathbb{Z} \subseteq m \mathbb{Z}$.
6. Show that $p \in \mathbb{Z}_{>0}$ is prime if and only if $\mathbb{Z} / p \mathbb{Z}$ is a simple \mathbb{Z}-module.
7. Let $m, n, \ell \in \mathbb{Z}_{>0}$ and assume that $m \ell=n$. Show that ℓ is prime if and only if $m \mathbb{Z} / n \mathbb{Z}$ is a simple \mathbb{Z}-module.
8. Let $n \in \mathbb{Z}_{>1}$. Show that there does not exist an infinite sequence $n>m_{1}>m_{2}>\cdots>1$ such that $n \mathbb{Z} \subsetneq m_{1} \mathbb{Z} \subsetneq m_{2} \mathbb{Z} \subsetneq \cdots \subsetneq \mathbb{Z}$.
9. Show that if M is a \mathbb{Z}-module and $N \subseteq M$ is a \mathbb{Z}-submodule of M and M / N is not simple then there exists a \mathbb{Z}-module M^{\prime} such that $N \subsetneq M^{\prime} \subsetneq M$.
10. Assume that $k \in \mathbb{Z}_{>0}$ and $p_{1}, \ldots, p_{k} \in \mathbb{Z}_{>0}$ are prime. Let

$$
n=p_{1} \cdots p_{k}, \quad m_{1}=p_{2} \cdots p_{k}, \quad \cdots, \quad m_{k-1}=p_{k}
$$

Show that $n \mathbb{Z} \subsetneq m_{1} \mathbb{Z} \subsetneq \cdots \subsetneq m_{k-1} \mathbb{Z} \subsetneq \mathbb{Z}$ and that Let $m_{0}=n$ and $m_{k}=1$. Show that if $j \in\{1 \ldots, k\}$ then $m_{j} \mathbb{Z} / m_{j-1} \mathbb{Z}$ is a simple \mathbb{Z}-module.
11. Let $n \in \mathbb{Z}_{>0}$. Show that there exist $k \in \mathbb{Z}_{>0}$ and primes $p_{1}, \ldots, p_{k} \in \mathbb{Z}_{>0}$ such that $n=p_{1} \cdots p_{k}$.
12. (Eisenstein criterion) Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}_{>0}$ be a prime integer.
Assume that
(a) p does not divide a_{n},
(b) p divides each of $a_{n-1}, a_{n-2}, \ldots, a_{0}$,
(c) p^{2} does not divide a_{0}.

Show that $f(x)$ is irreducible in $\mathbb{Q}[x]$.
13. Let $f(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$ and let p be a prime integer such that p does not divide a_{n}. Let

$$
\begin{array}{lccc}
\pi_{p}: & \mathbb{Z}[x] & \rightarrow & \mathbb{Z} / p \mathbb{Z}[x] \\
a_{n} x^{n}+\cdots+a_{0} & \mapsto & \bar{a}_{n} x^{n}+\cdots+\bar{a}_{0},
\end{array} \quad \text { where } \bar{a} \text { denotes } a \bmod p
$$

Show that if $\pi_{p}(f(x))$ is irreducible in $\mathbb{Z} / p \mathbb{Z}[x]$ then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
14. Show that if $f(x) \in \mathbb{Z}[x]$, $\operatorname{deg}(f(x))>0$, and $f(x)$ is irreducible in $\mathbb{Z}[x]$ then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
15. Let $f(x) \in \mathbb{Z}[x]$. Show that $f(x)$ is irreducible in $\mathbb{Z}[x]$ if and only if
either $f(x)= \pm p$, where p is a prime integer,
or $f(x)$ is a primitive polynomial and $f(x)$ is irreducible in $\mathbb{Q}[x]$.

