MAST30005 ALGEBRA
 SEMESTER 1, 2024
 PRACTICE CLASS 5

Euclidean domains

(1) Let I be an ideal of \mathbb{Z}. Let $m \in \mathbb{Z}_{\geq 0}$ be minimal such that $m \in I$. Show that $m \mathbb{Z}=I$.
(2) Show that if I is an ideal of \mathbb{Z} then there exists $m \in \mathbb{Z}_{\geq 0}$ such that $m \mathbb{Z}=I$.
(3) Show that $\mathbb{Z}_{\geq 0}$ indexes the ideals of \mathbb{Z}.
(4) Show that $p \in \mathbb{Z}_{>0}$ is prime if and only if there does not exist $c \in \mathbb{Z}_{>1}$ such that $p \mathbb{Z} \subsetneq c \mathbb{Z} \subsetneq \mathbb{Z}$.
(5) Let $m, n \in \mathbb{Z}_{>0}$. Show that n is divisible by m if and only if $n \mathbb{Z} \subseteq m \mathbb{Z}$.
(6) Show that $p \in \mathbb{Z}_{>0}$ is prime if and only if $\mathbb{Z} / p \mathbb{Z}$ is a simple \mathbb{Z}-module.
(7) Let $m, n, \ell \in \mathbb{Z}_{>0}$ and assume that $m \ell=n$. Show that ℓ is prime if and only if $m \mathbb{Z} / n \mathbb{Z}$ is a simple \mathbb{Z}-module.

ACC and DCC

(8) Let $n \in \mathbb{Z}_{>1}$. Show that there does not exist an infinite sequence $n>m_{1}>m_{2}>$ $\cdots>1$ such that $n \mathbb{Z} \subsetneq m_{1} \mathbb{Z} \subsetneq m_{2} \mathbb{Z} \subsetneq \cdots \subsetneq \mathbb{Z}$.
(9) Show that if M is a \mathbb{Z}-module and $N \subseteq M$ is a \mathbb{Z}-submodule of M and M / N is not simple then there exists a \mathbb{Z}-module M^{\prime} such that $N \subsetneq M^{\prime} \subsetneq M$.
(10) Assume that $k \in \mathbb{Z}_{>0}$ and $p_{1}, \ldots, p_{k} \in \mathbb{Z}_{>0}$ are prime. Let

$$
n=p_{1} \cdots p_{k}, \quad m_{1}=p_{2} \cdots p_{k}, \quad \cdots, \quad m_{k-1}=p_{k}
$$

Show that $n \mathbb{Z} \subsetneq m_{1} \mathbb{Z} \subsetneq \cdots \subsetneq m_{k-1} \mathbb{Z} \subsetneq \mathbb{Z}$ and that Let $m_{0}=n$ and $m_{k}=1$. Show that if $j \in\{1 \ldots, k\}$ then $m_{j} \mathbb{Z} / m_{j-1} \mathbb{Z}$ is a simple \mathbb{Z}-module.
(11) Let $n \in \mathbb{Z}_{>0}$. Show that there exist $k \in \mathbb{Z}_{>0}$ and primes $p_{1}, \ldots, p_{k} \in \mathbb{Z}_{>0}$ such that $n=p_{1} \cdots p_{k}$.

Recall that a ring A satisfies the ascending chain condition (resp. descending chain condition) if any increasing chain of ideals $I_{1} \subseteq I_{2} \subseteq \ldots$ (resp. decreasing chain $I_{1} \supseteq I_{2} \supseteq \ldots$) stabilises (that is, there exists n_{0} such that if $n \geq n_{0}$ then $I_{n}=I_{n+1}$). The fancy name for this type of ring is Noetherian (resp. Artinian).
(12) Show that a (commutative) ring A is Noetherian (resp. Artinian) if and only if it satisfies the following property: every nonempty set of ideals of A, partially ordered by inclusion, has a maximal (resp. minimal) element.
(13) Let A be an Artinian ring.
(a) Show that if A is an integral domain then A is a field.
(b) Show that if I is an ideal in A then the ring A / I is also Artinian.
(c) Show that every prime ideal of A is maximal.
(14) Which of the following rings are Artinian (satisfy DCC)? (Hints: use the above exercise, and consider dimensions)
(a) $\mathbb{C}[x]$,
(b) $\mathbb{C}[x] /\left(x^{2}-1\right)$,
(c) $\mathbb{C}[x, y] /\left(y^{2}-x^{3}\right)$,
(d) $\mathbb{C}[x, y] /\left(x^{2}, x y\right)$,
(e) $\mathbb{C}[x, y] /\left(x-y, x^{2}+y^{2}-1\right)$,
(f) $\mathbb{R}[x, y] /\left(x^{2}+y^{2}+1\right)$,
(f.5) $\mathbb{C}[x, y] /\left(x^{2}+y^{2}+1\right)$.
(15) Plot the following graphs around the origin:
(a) $\{x \in \mathbb{R}\}$
(b) $\left\{x \in \mathbb{R} \mid x^{2}-1=0\right\}$
(c) $\left\{(x, y) \in \mathbb{R}^{2} \mid y^{2}-x^{3}=0\right\}$
(d) $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}=0\right.$ and $\left.x y=0\right\}$
(e) $\left\{(x, y) \in \mathbb{R}^{2} \mid x-y=0\right.$ and $\left.x^{2}+y^{2}-1=0\right\}$.
(f) $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}+1=0\right\}$.
(16) What is the cardinality of $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}+1=0\right\}$? How about $\left\{(x, y) \in \mathbb{C}^{2} \mid\right.$ $\left.x^{2}+y^{2}+1=0\right\} ?$

In fact, one can show that Artinian rings are always Noetherian.

FACTORISATION IN POLYNOMIAL RINGS

(17) (Eisenstein criterion) Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}_{>0}$ be a prime integer.
Assume that
(a) p does not divide a_{n},
(b) p divides each of $a_{n-1}, a_{n-2}, \ldots, a_{0}$,
(c) p^{2} does not divide a_{0}.

Show that $f(x)$ is irreducible in $\mathbb{Q}[x]$.
(18) Let $f(x)=a_{n} x^{n}+\cdots+a_{0} \in \mathbb{Z}[x]$ and let p be a prime integer such that p does not divide a_{n}. Let

$$
\begin{array}{cccc}
\pi_{p}: & \mathbb{Z}[x] & \rightarrow & \mathbb{Z} / p \mathbb{Z}[x] \\
a_{n} x^{n}+\cdots+a_{0} & \mapsto & \bar{a}_{n} x^{n}+\cdots+\bar{a}_{0},
\end{array} \quad \text { where } \bar{a} \text { denotes } a \bmod p
$$

Show that if $\pi_{p}(f(x))$ is irreducible in $\mathbb{Z} / p \mathbb{Z}[x]$ then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
(19) Show that if $f(x) \in \mathbb{Z}[x]$, $\operatorname{deg}(f(x))>0$, and $f(x)$ is irreducible in $\mathbb{Z}[x]$ then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
(20) Let $f(x) \in \mathbb{Z}[x]$. Show that $f(x)$ is irreducible in $\mathbb{Z}[x]$ if and only if either $f(x)= \pm p$, where p is a prime integer, or $f(x)$ is a primitive polynomial and $f(x)$ is irreducible in $\mathbb{Q}[x]$.

