MAST30005 ALGEBRA SEMESTER 1, 2024 PRACTICE CLASS 5

EUCLIDEAN DOMAINS

(1) Let I be an ideal of \mathbb{Z} . Let $m \in \mathbb{Z}_{\geq 0}$ be minimal such that $m \in I$. Show that $m\mathbb{Z} = I$.

- (2) Show that if I is an ideal of \mathbb{Z} then there exists $m \in \mathbb{Z}_{\geq 0}$ such that $m\mathbb{Z} = I$.
- (3) Show that $\mathbb{Z}_{\geq 0}$ indexes the ideals of \mathbb{Z} .
- (4) Show that $p \in \mathbb{Z}_{>0}$ is prime if and only if there does not exist $c \in \mathbb{Z}_{>1}$ such that $p\mathbb{Z} \subsetneq c\mathbb{Z} \subsetneq \mathbb{Z}$.
- (5) Let $m, n \in \mathbb{Z}_{>0}$. Show that n is divisible by m if and only if $n\mathbb{Z} \subseteq m\mathbb{Z}$.
- (6) Show that $p \in \mathbb{Z}_{>0}$ is prime if and only if $\mathbb{Z}/p\mathbb{Z}$ is a simple \mathbb{Z} -module.
- (7) Let $m, n, \ell \in \mathbb{Z}_{>0}$ and assume that $m\ell = n$. Show that ℓ is prime if and only if $m\mathbb{Z}/n\mathbb{Z}$ is a simple \mathbb{Z} -module.

ACC AND DCC

- (8) Let $n \in \mathbb{Z}_{>1}$. Show that there does not exist an infinite sequence $n > m_1 > m_2 > \cdots > 1$ such that $n\mathbb{Z} \subsetneq m_1\mathbb{Z} \subsetneq m_2\mathbb{Z} \subsetneq \cdots \subsetneq \mathbb{Z}$.
- (9) Show that if M is a \mathbb{Z} -module and $N \subseteq M$ is a \mathbb{Z} -submodule of M and M/N is not simple then there exists a \mathbb{Z} -module M' such that $N \subsetneq M' \subsetneq M$.
- (10) Assume that $k \in \mathbb{Z}_{>0}$ and $p_1, \ldots, p_k \in \mathbb{Z}_{>0}$ are prime. Let

 $n = p_1 \cdots p_k, \quad m_1 = p_2 \cdots p_k, \quad \dots, \quad m_{k-1} = p_k.$

Show that $n\mathbb{Z} \subseteq m_1\mathbb{Z} \subseteq \cdots \subseteq m_{k-1}\mathbb{Z} \subseteq \mathbb{Z}$ and that Let $m_0 = n$ and $m_k = 1$. Show that if $j \in \{1, \ldots, k\}$ then $m_j\mathbb{Z}/m_{j-1}\mathbb{Z}$ is a simple \mathbb{Z} -module.

(11) Let $n \in \mathbb{Z}_{>0}$. Show that there exist $k \in \mathbb{Z}_{>0}$ and primes $p_1, \ldots, p_k \in \mathbb{Z}_{>0}$ such that $n = p_1 \cdots p_k$.

Recall that a ring A satisfies the ascending chain condition (resp. descending chain condition) if any increasing chain of ideals $I_1 \subseteq I_2 \subseteq ...$ (resp. decreasing chain $I_1 \supseteq I_2 \supseteq ...$) stabilises (that is, there exists n_0 such that if $n \ge n_0$ then $I_n = I_{n+1}$). The fancy name for this type of ring is Noetherian (resp. Artinian).

- (12) Show that a (commutative) ring A is Noetherian (resp. Artinian) if and only if it satisfies the following property: every nonempty set of ideals of A, partially ordered by inclusion, has a maximal (resp. minimal) element.
- (13) Let A be an Artinian ring.
 - (a) Show that if A is an integral domain then A is a field.
 - (b) Show that if I is an ideal in A then the ring A/I is also Artinian.
 - (c) Show that every prime ideal of A is maximal.
- (14) Which of the following rings are Artinian (satisfy DCC)? (Hints: use the above exercise, and consider dimensions)
 - (a) $\mathbb{C}[x]$, (b) $\mathbb{C}[x]/(x^2-1)$, (c) $\mathbb{C}[x,y]/(y^2-x^3)$, (d) $\mathbb{C}[x,y]/(x^2,xy)$, (e) $\mathbb{C}[x,y]/(x-y,x^2+y^2-1)$, (f) $\mathbb{R}[x,y]/(x^2+y^2+1)$, (f.5) $\mathbb{C}[x,y]/(x^2+y^2+1)$.
- (15) Plot the following graphs around the origin:
 - (a) $\{x \in \mathbb{R}\}$ (b) $\{x \in \mathbb{R} \mid x^2 - 1 = 0\}$ (c) $\{(x, y) \in \mathbb{R}^2 \mid y^2 - x^3 = 0\}$ (d) $\{(x, y) \in \mathbb{R}^2 \mid x^2 = 0 \text{ and } xy = 0\}$ (e) $\{(x, y) \in \mathbb{R}^2 \mid x - y = 0 \text{ and } x^2 + y^2 - 1 = 0\}.$ (f) $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 + 1 = 0\}.$
- (16) What is the cardinality of $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 + 1 = 0\}$? How about $\{(x, y) \in \mathbb{C}^2 \mid x^2 + y^2 + 1 = 0\}$?

In fact, one can show that Artinian rings are always Noetherian.

FACTORISATION IN POLYNOMIAL RINGS

- (17) (Eisenstein criterion) Let f(x) = a_nxⁿ + a_{n-1}xⁿ⁻¹ + · · · + a₀ ∈ Z[x] and let p ∈ Z_{>0} be a prime integer.
 Assume that
 (a) n does not divide a
 - (a) p does not divide a_n ,

(b) p divides each of $a_{n-1}, a_{n-2}, \ldots, a_0$, (c) p^2 does not divide a_0 .

Show that f(x) is irreducible in $\mathbb{Q}[x]$.

(18) Let $f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ and let p be a prime integer such that p does not divide a_n . Let

$$\pi_p: \qquad \mathbb{Z}[x] \qquad \to \qquad \mathbb{Z}/p\mathbb{Z}[x] \\ a_n x^n + \dots + a_0 \qquad \mapsto \quad \bar{a}_n x^n + \dots + \bar{a}_0, \qquad \text{where } \bar{a} \text{ denotes } a \mod p.$$

Show that if $\pi_p(f(x))$ is irreducible in $\mathbb{Z}/p\mathbb{Z}[x]$ then f(x) is irreducible in $\mathbb{Q}[x]$.

- (19) Show that if $f(x) \in \mathbb{Z}[x]$, deg (f(x)) > 0, and f(x) is irreducible in $\mathbb{Z}[x]$ then f(x) is irreducible in $\mathbb{Q}[x]$.
- (20) Let $f(x) \in \mathbb{Z}[x]$. Show that f(x) is irreducible in $\mathbb{Z}[x]$ if and only if

either $f(x) = \pm p$, where p is a prime integer,

or f(x) is a primitive polynomial and f(x) is irreducible in $\mathbb{Q}[x]$.