3.10 Tutorial 4: NEW MAST30005 Semester 1: Proof machine practice

1. The correspondence theorem. Let R be a ring, M an R-module and N an R-submodule of M.

- (a) Carefully define the lattice \mathcal{S}_N^M of submodules between N and M.
- (b) Carefully state the correspondence theorem.
- (c) Carefully prove the correspondence theorem.
- **2.** Tor. Let *R* be a ring, *M* an *R*-module and *N* an *R*-submodule of *M*. Let *R* be a integral domain and let *M* be an *R*-module.
 - The torsion submodule of M is

$$\operatorname{Tor}(M) = \{m \in M \mid \text{there exists } a \in R \text{ with } a \neq 0 \text{ and } am = 0\}.$$

• The module M is free of finite rank if there exists $r \in \mathbb{Z}_{>0}$ such that $M \cong \mathbb{A}^{\oplus r}$.

Let R be an integral domain and let M be an R-module.

- (a) Show that if M is an R-module then Tor(M) is an R-submodule of M.
- (b) Show that if M and N are R-modules then $\operatorname{Tor}(M \oplus N) = \operatorname{Tor}(M) \oplus \operatorname{Tor}(N)$.
- (c) Show that Tor(R) = 0.
- (d) Show that if $d \in R$ and $d \neq 0$ then $\operatorname{Tor}(R/dR) = R/dR$.
- (e) Carefully prove the following proposition.

Proposition 3.22. Let \mathbb{A} be a PID. Assume that M is an \mathbb{A} -module and there exist $r, k \in \mathbb{Z}_{>0}$ and $d_1, \ldots, d_k \in (\mathbb{A} - \{0, 1\})/\mathbb{A}^{\times}$ such that

$$M \cong \mathbb{A}^{\oplus r} \oplus \left(\frac{\mathbb{A}}{d_1\mathbb{A}} \oplus \dots \oplus \frac{\mathbb{A}}{d_k\mathbb{A}}\right).$$
 Then $\operatorname{Tor}(M) \cong \frac{\mathbb{A}}{d_1\mathbb{A}} \oplus \dots \oplus \frac{\mathbb{A}}{d_k\mathbb{A}}$

3. The torsion part and the free part. Let \mathbb{A} be a PID and let M be an \mathbb{A} -module given by a finite number of generators and relations.

- (a) Carefully state the Krull-Schmidt theorem for M.
- (b) Prove that if K is a submodule of M then $Tor(K) \subseteq Tor(M)$.
- (c) Prove that M is free of finite rank if and only if Tor(M) = 0.
- (d) Prove that if M is free of finite rank and K is a submodule of M then K is free of finite rank.