3.8 Tutorial 3: NEW MAST30005 Semester 1: Last week's theorems

Last week we covered the following theorems. Write careful proofs of each.

Proposition 3.15. Let \mathbb{F} be a field and let $f(x) \in \mathbb{F}[x]$. The following are equivalent
(a) $f(x)$ is irreducible in $\mathbb{F}[x]$,
(b) $f(x) \mathbb{F}[x]$ is a maximal ideal,
(c) $\frac{\mathbb{F}[x]}{f(x) \mathbb{F}[x]}$ is a field.

Proposition 3.16. Let $f(x) \in \mathbb{Z}[x]$. Then $f(x)$ is irreducible in $\mathbb{Z}[x]$ if and only if
either $f(x)= \pm p$, where p is a prime integer,
or $f(x)$ is a primitive polynomial and $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Proposition 3.17. Let $f(x) \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}_{>0}$ be prime. Let $\overline{f(x)}$ denote the image of $f(x)$ in $\mathbb{F}_{p}[x]$.

$$
\begin{gathered}
\text { If } \operatorname{deg}(\overline{f(x)})=\operatorname{deg}\left(f(x) \text { and } \overline{f(x)} \text { is irreducible in } \mathbb{F}_{p}[x]\right. \\
\text { then } f(x) \text { is irreducible in } \mathbb{Z}[x] .
\end{gathered}
$$

Theorem 3.18. (Smith normal form) Let $t, s \in \mathbb{Z}_{>0}$. Let $A \in M_{t \times s}(\mathbb{F}[x])$ and let $r=\min (t, s)$. Then there exist $P \in G L_{t}(\mathbb{F}[x])$ and $Q \in G L_{s}(\mathbb{F}[x])$ and $d_{1}, \ldots, d_{r} \in \mathbb{F}[x]_{\text {monic }}$ such that $d_{1} \mathbb{F}[x] \supseteq d_{2} \mathbb{F}[x] \supseteq$ $\cdots \supseteq d_{k} \mathbb{F}[x]$ and

$$
A=P D Q, \quad \text { where } \quad D=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right)
$$

Theorem 3.19. Let \mathbb{A} be a PID and let M be a finitely generated \mathbb{A} module. Then there exist $k, \ell \in \mathbb{Z}_{\geq 0}$ and $d_{1}, \ldots, d_{k} \in \mathbb{A}$ such that

$$
M \cong \frac{\mathbb{A}}{d_{1} \mathbb{A}} \oplus \cdots \oplus \frac{\mathbb{A}}{d_{k} \mathbb{A}} \oplus \mathbb{A}^{\oplus \ell}
$$

3.8.1 Proof sketches

Proposition 3.20. Let \mathbb{A} be a PID and let M be an \mathbb{A}-module given by generators

$$
\begin{array}{cc}
& \\
\text { generators } & m_{1}, \ldots, m_{s} \in M
\end{array} \quad \text { and relations } \quad \begin{gathered}
11 \\
m_{1}+\cdots+a_{1 s} m_{s}=0, \\
\\
\\
a_{t 1} m_{1}+\cdots+a_{t s} m_{s}=0,
\end{gathered}
$$

Let $P \in G L_{t}(\mathbb{A}), Q \in G L_{s}(\mathbb{A}), k=\min (s, t)$ and $d_{1}, \ldots, d_{k} \in \mathbb{A}$ such that

$$
A=P D Q, \quad \text { where } \quad D=\operatorname{diag}\left(d_{1}, \ldots, d_{k}\right)
$$

Then M is presented by
generators $\quad b_{1}, \ldots, b_{s} \quad$ and relations $\quad d_{1} b_{1}=0, \ldots, d_{k} b_{k}=0$.
Proof. For $i \in\{1, \ldots, s\}$ let

$$
b_{i}=Q_{i 1} m_{1}+\cdots+Q_{i s} m_{s}, \quad \text { so that } \quad m_{j}=\left(Q^{-1}\right)_{j 1} b_{1}+\cdots+\left(Q^{-1}\right)_{j s} b_{s}
$$

for $j \in\{1, \ldots, s\}$. Thus generators (m) can be written in terms of generators (b) and vice versa. Since

$$
\sum_{j} a_{i j} m_{j}=\sum_{j, k} a_{i j} Q_{j k}^{-1} b_{k}=\sum_{k} P_{i k} d_{k} b_{k}=0
$$

then the relations (m) can be derived from the relations (b). Since

$$
d_{k} b_{k}=\sum_{i, j, l}\left(P^{-1}\right)_{k j} a_{j l}\left(Q^{-1}\right)_{l k} b_{k}=\sum_{i, j, l}\left(P^{-1}\right)_{k j} a_{j l} m_{l}=0
$$

then the relations (b) can be derived from the relations (m).
Theorem 3.21. Let \mathbb{A} be a PID and let M be a finitely generated \mathbb{A} module. Then there exist $k, \ell \in \mathbb{Z}_{\geq 0}$ and $d_{1}, \ldots, d_{k} \in \mathbb{A}$ such that

$$
M \cong \frac{\mathbb{A}}{d_{1} \mathbb{A}} \oplus \cdots \oplus \frac{\mathbb{A}}{d_{k} \mathbb{A}} \oplus \mathbb{A}^{\oplus \ell}
$$

Proof. Since M is finitely generated there exist $s \in \mathbb{Z}_{>0}$ and $m_{1}, \ldots, m_{s} \in M$ such that

$$
M=\mathbb{A}-\operatorname{span}\left\{m_{1}, \ldots, m_{s}\right\}, \quad \text { Define } \begin{array}{rll}
\mathbb{A}^{\oplus s} & \xrightarrow{\Phi} & M \\
e_{i} & \longmapsto & m_{i}
\end{array} \quad \text { and let } \quad K=\operatorname{ker}(\Phi) .
$$

Since \mathbb{A} satisfies $A C C$ and $\mathbb{A}^{\oplus s}$ is a finitely generated \mathbb{A}-module then

$$
\text { the } \mathbb{A} \text {-submodule } K \text { is finitely generated. }
$$

So there exist $t \in \mathbb{Z}_{>0}$ and

$$
a_{1}=\left(a_{11}, \ldots, a_{1 s}\right), \quad \ldots \quad a_{t}=\left(a_{t 1}, \ldots, a_{t s}\right) \quad \text { in } \mathbb{A}^{\oplus s} \quad \text { such that } \quad K=\mathbb{A}-\operatorname{span}\left\{a_{1}, \ldots, a_{t}\right\}
$$

Since

$$
M \cong \frac{\mathbb{A}^{\oplus s}}{K}
$$

then M is presented by

$$
\begin{array}{ccc}
& & a_{11} m_{1}+\cdots+a_{1 s} m_{s}=0 \\
\text { generators } & m_{1}, \ldots, m_{s} \in M & \text { and relations } \\
& a_{t 1} m_{1}+\cdots+a_{t s} m_{s}=0
\end{array}
$$

Then use the previous proposition to produce the isomorphism $M \cong \frac{\mathbb{A}}{d_{1} \mathbb{A}} \oplus \cdots \oplus \frac{\mathbb{A}}{d_{k} \mathbb{A}} \oplus \mathbb{A} \oplus \ell$.

