3.8 Tutorial 3: NEW MAST30005 Semester 1: Last week's theorems

Last week we covered the following theorems. Write careful proofs of each.

Proposition 3.15. Let \mathbb{F} be a field and let $f(x) \in \mathbb{F}[x]$. The following are equivalent

(a) f(x) is irreducible in $\mathbb{F}[x]$, (b) $f(x)\mathbb{F}[x]$ is a maximal ideal, (c) $\frac{\mathbb{F}[x]}{f(x)\mathbb{F}[x]}$ is a field.

Proposition 3.16. Let $f(x) \in \mathbb{Z}[x]$. Then f(x) is irreducible in $\mathbb{Z}[x]$ if and only if

either $f(x) = \pm p$, where p is a prime integer, or f(x) is a primitive polynomial and f(x) is irreducible in $\mathbb{Q}[x]$.

Proposition 3.17. Let $f(x) \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}_{>0}$ be prime. Let $\overline{f(x)}$ denote the image of f(x) in $\mathbb{F}_p[x]$.

If
$$\deg(f(x)) = \deg(f(x) \text{ and } f(x) \text{ is irreducible in } \mathbb{F}_p[x]$$

then f(x) is irreducible in $\mathbb{Z}[x]$.

Theorem 3.18. (Smith normal form) Let $t, s \in \mathbb{Z}_{>0}$. Let $A \in M_{t \times s}(\mathbb{F}[x])$ and let $r = \min(t, s)$. Then there exist $P \in GL_t(\mathbb{F}[x])$ and $Q \in GL_s(\mathbb{F}[x])$ and $d_1, \ldots, d_r \in \mathbb{F}[x]_{\text{monic}}$ such that $d_1\mathbb{F}[x] \supseteq d_2\mathbb{F}[x] \supseteq \cdots \supseteq d_k\mathbb{F}[x]$ and

A = PDQ, where $D = \operatorname{diag}(d_1, \ldots, d_r)$.

Theorem 3.19. Let \mathbb{A} be a PID and let M be a finitely generated \mathbb{A} module. Then there exist $k, \ell \in \mathbb{Z}_{\geq 0}$ and $d_1, \ldots, d_k \in \mathbb{A}$ such that

$$M \cong \frac{\mathbb{A}}{d_1 \mathbb{A}} \oplus \dots \oplus \frac{\mathbb{A}}{d_k \mathbb{A}} \oplus \mathbb{A}^{\oplus \ell}$$

3.8.1 Proof sketches

Proposition 3.20. Let \mathbb{A} be a PID and let M be an \mathbb{A} -module given by generators

generators $m_1, \ldots, m_s \in M$ and relations

$$a_{t1}m_1 + \dots + a_{ts}m_s = 0,$$

 $a_{11}m_1 + \dots + a_{1s}m_s = 0,$

Let $P \in GL_t(\mathbb{A})$, $Q \in GL_s(\mathbb{A})$, $k = \min(s, t)$ and $d_1, \ldots, d_k \in \mathbb{A}$ such that

$$A = PDQ,$$
 where $D = \operatorname{diag}(d_1, \ldots, d_k).$

Then M is presented by

generators b_1, \ldots, b_s and relations $d_1b_1 = 0, \ldots, d_kb_k = 0.$

Proof. For $i \in \{1, \ldots, s\}$ let

$$b_i = Q_{i1}m_1 + \dots + Q_{is}m_s$$
, so that $m_j = (Q^{-1})_{j1}b_1 + \dots + (Q^{-1})_{js}b_s$,

for $j \in \{1, \ldots, s\}$. Thus generators (m) can be written in terms of generators (b) and vice versa. Since

$$\sum_{j} a_{ij} m_j = \sum_{j,k} a_{ij} Q_{jk}^{-1} b_k = \sum_{k} P_{ik} d_k b_k = 0$$

then the relations (m) can be derived from the relations (b). Since

$$d_k b_k = \sum_{i,j,l} (P^{-1})_{kj} a_{jl} (Q^{-1})_{lk} b_k = \sum_{i,j,l} (P^{-1})_{kj} a_{jl} m_l = 0,$$

then the relations (b) can be derived from the relations (m).

Theorem 3.21. Let \mathbb{A} be a PID and let M be a finitely generated \mathbb{A} module. Then there exist $k, \ell \in \mathbb{Z}_{\geq 0}$ and $d_1, \ldots, d_k \in \mathbb{A}$ such that

$$M \cong \frac{\mathbb{A}}{d_1 \mathbb{A}} \oplus \dots \oplus \frac{\mathbb{A}}{d_k \mathbb{A}} \oplus \mathbb{A}^{\oplus \ell}$$

Proof. Since M is finitely generated there exist $s \in \mathbb{Z}_{>0}$ and $m_1, \ldots, m_s \in M$ such that

$$M = \mathbb{A}\text{-span}\{m_1, \dots, m_s\},$$
 Define $\begin{array}{ccc} \mathbb{A}^{\oplus s} & \xrightarrow{\Phi} & M \\ e_i & \longmapsto & m_i \end{array}$ and let $K = \ker(\Phi).$

Since A satisfies ACC and $\mathbb{A}^{\oplus s}$ is a finitely generated A-module then

the \mathbb{A} -submodule K is finitely generated.

So there exist $t \in \mathbb{Z}_{>0}$ and

 $a_1 = (a_{11}, \dots, a_{1s}), \quad \dots \quad a_t = (a_{t1}, \dots, a_{ts}) \quad \text{in } \mathbb{A}^{\oplus s} \quad \text{such that} \quad K = \mathbb{A}\text{-span}\{a_1, \dots, a_t\}.$ Since

$$M \cong \frac{\mathbb{A}^{\oplus s}}{K}$$

then M is presented by

$$a_{11}m_1 + \dots + a_{1s}m_s = 0,$$

generators $m_1, \ldots, m_s \in M$ and relations

 $a_{t1}m_1 + \dots + a_{ts}m_s = 0,$

Then use the previous proposition to produce the isomorphism $M \cong \frac{\mathbb{A}}{d_1\mathbb{A}} \oplus \cdots \oplus \frac{\mathbb{A}}{d_k\mathbb{A}} \oplus \mathbb{A}^{\oplus \ell}$. \Box