1.4 Tutorial 2 MAST30005, Semester I, 2024: Fields and vector spaces

- 1. Carefully define a field.
- 2. Carefully define a vector space.
- 3. Carefully define $\operatorname{span}(S)$.
- 4. Carefully define linearly independent.
- 5. Carefully define basis.
- 6. Carefully define \mathbb{Q} and prove that it is a field.
- 7. Carefully define \mathbb{C} and prove that it is a field.
- 8. Let $m \in \mathbb{Z}_{>0}$. Carefully define $\mathbb{Z}/m\mathbb{Z}$.
- 9. Let $p \in \mathbb{Z}_{>0}$. Show that $\mathbb{Z}/p\mathbb{Z}$ is a field if and only if p is prime.
- 10. Show that $3 \cdot 6 = 1 \cdot 6$ in $\mathbb{Z}/12\mathbb{Z}$.
- 11. Let $m \in \mathbb{Z}_{>1}$. Show that if m is not prime then there exist $a, b, c \in \mathbb{Z}/m\mathbb{Z}$ such that ac = bc and $c \neq 0$ and $a \neq b$.
- 12. Let \mathbb{F} be a field. Show that if $a, b, c \in \mathbb{F}$ and ac = bc and $c \neq 0$ then a = b.
- 13. Show that if $a, b, c \in \mathbb{Z}$ and ac = bc and $c \neq 0$ then a = b.
- 14. Carefully define $\mathbb{R}[x]$ and determine which of the axioms of a field it satisfies and which axioms of a field it does not satisfy.
- 15. Show that if $a, b, c \in \mathbb{R}[x]$ and ac = bc and $c \neq 0$ then a = b.
- 16. Show that the \mathbb{R} -subspace of \mathbb{C} with \mathbb{R} -basis $\{1, i\}$ is a field.
- 17. Show that the \mathbb{Q} -subspace of \mathbb{C} with \mathbb{Q} -basis $\{1, i\}$ is a field.
- 18. Let $2^{1/3} \in \mathbb{R}_{\geq 0}$. Show that the Q-subspace of C with Q-basis $\{1, 2^{1/3}, 2^{2/3}\}$ is a field.
- 19. Let $\zeta = e^{2\pi i/3}$. Show that $\zeta^2 = -1 \zeta$ and that the Q-subspace of C with Q-basis $\{1, \zeta, \}$ is a field.
- 20. Let $\zeta = e^{2\pi i/3}$. Show that $\zeta^2 = -1 \zeta$ and that the \mathbb{R} -subspace of \mathbb{C} with \mathbb{R} -basis $\{1, \zeta\}$ is a field.
- 21. Let $2^{1/3} \in \mathbb{R}_{\geq 0}$ and $\zeta = e^{2\pi i/3}$. Show that the \mathbb{Q} -subspace of \mathbb{C} with \mathbb{Q} -basis $\{1, \zeta, 2^{1/3}, 2^{1/3}\zeta, 2^{2/3}, 2^{2/3}\zeta\}$ is a field.
- 22. Let $2^{1/3} \in \mathbb{R}_{\geq 0}$ and $\zeta = e^{2\pi i/3}$. Find a \mathbb{Q} -basis of the smallest field contained in \mathbb{C} that contains \mathbb{Q} and $2^{\frac{1}{3}}\zeta$.