3.3 Tutorial 1 NNEW MAST30005 Semester 1, 2024: Last week's theorems

Last week we covered the following theorems. Write careful proofs of each.

Proposition 3.1. Let \mathbb{K} be a field and let H be a subgroup of $Aut(\mathbb{K})$. Then \mathbb{K}^H is a subfield of \mathbb{K} .

Theorem 3.2. Let $\varphi \colon A \to R$ be a ring homomorphism. Let $K = \ker(\varphi)$. Then the function

$$\frac{A}{\ker(\varphi)} \to \operatorname{im}(\varphi) \qquad \text{is a ring isomorphism.} \\ a+K \mapsto \varphi(a)$$

Proposition 3.3. Let \mathbb{F} be a subfield of a field \mathbb{K} and let $\alpha \in \mathbb{K}$. Let $\mathbb{F}[x] \xrightarrow{\operatorname{ev}_{\alpha,\mathbb{F}}} \mathbb{K}$ be the evaluation homomorphism. Let $\mathbb{F}(\alpha)$ be the smallest subfield of \mathbb{K} containing \mathbb{F} and α . Let

$$\mathbb{F}[\alpha] = \operatorname{im}(\operatorname{ev}_{\alpha,\mathbb{F}}) \qquad and \ let \quad m_{\alpha,\mathbb{F}}(x) = c_0 + c_1 x + \cdots + c_{\ell-1} x^{\ell-1} + x^{\ell} \quad \in \mathbb{F}[x]$$

be such that

$$\ker(\operatorname{ev}_{\alpha,\mathbb{F}}) = (m_{\alpha,\mathbb{F}}(x)), \qquad where \quad (m_{\alpha,\mathbb{F}}(x)) = m_{\alpha,\mathbb{F}}(x)\mathbb{F}[x] = \{m_{\alpha,\mathbb{F}}(x)g \mid g \in \mathbb{F}[x]\}.$$

Then

$$\mathbb{F}(\alpha) = \mathbb{F}[\alpha] \cong \frac{\mathbb{F}[x]}{(m_{\alpha,\mathbb{F}}(x))}$$

and, as a vector space over \mathbb{F} ,

$$\mathbb{F}(\alpha)$$
 has \mathbb{F} -basis $\{1, \alpha, \alpha^2, \dots, \alpha^{\ell-1}\}$.

Theorem 3.4. Let \mathbb{E} be a subfield of \mathbb{K} and assume that there exists $f \in \mathbb{E}[x]$ such that \mathbb{K} is the splitting field of f over \mathbb{E} . Then the map

$$\begin{cases} field \ inclusions \ \mathbb{F} \subseteq \mathbb{E} \subseteq \mathbb{K} \\ & \mathbb{F} & \longmapsto & \operatorname{Aut}_{\mathbb{F}}(\mathbb{K}) \supseteq H \supseteq \{1\} \\ & \mathbb{K}^{H} & \longleftarrow & H \end{cases}$$

is an isomorphism of posets.

Some worked steps for the proof of Theorem 3.3:

HW 1: Show that $\operatorname{im}(\operatorname{ev}_{\alpha,\mathbb{F}}) = \mathbb{F}[\alpha]$.

Proof. This is clearly true.

This proof, as it is, should get 0 marks (or maybe negative marks). It is offensive to the reader that is trying hard and earnestly to learn this stuff and that reader does not deserve insults. \Box

HW 2: Show that \mathbb{F} -span $\{1, \alpha, \alpha^2, \dots, \alpha^{\ell-1}\} = \mathbb{F}[\alpha]$.

Proof. To show: \mathbb{F} -span $\{1, \alpha, \dots, \alpha^{\ell-1}\} = \mathbb{F}[\alpha]$. Since $\mathbb{F}[\alpha] = \operatorname{im}(\operatorname{ev}_{\alpha,\mathbb{F}})$ and $\mathbb{F}[x]$ is spanned by $\{1, x, x^2, \dots\}$ then $\mathbb{F}[\alpha]$ is spanned by $\{1, \alpha, \alpha^2, \dots\}$. If $k \in \mathbb{Z}_{\geq 0}$ then $\alpha^{\ell+k} = \alpha^k(-c_0 - \dots - c_{\ell-1}\alpha^{\ell-1}) \in \mathbb{F}$ -span $\{1, \alpha, \dots, \alpha^{\ell+k-1}\}$ So $\mathbb{F}[\alpha]$ is spanned by $\{1, \alpha, \dots, \alpha^{\ell-1}\}$.

This proof, as it is, shold not get full marks. It has too many skipped steps and the writing is rather incomprehensible. $\hfill\square$

HW 3: Show that $\{1, \alpha, \alpha^2, \ldots, \alpha^{\ell-1}\}$ is \mathbb{F} -linearly independent in $\mathbb{F}[\alpha]$.

Proof. (c) To show: $\{1, \alpha, \dots, \alpha^{\ell-1}\}$ is linearly independent. Assume that $a_0 + a_1\alpha + \cdots + a_{\ell-1}\alpha^{\ell-1} = 0$. Then $a_0 + a_1x + \cdots + a_{\ell-1}x^{\ell-1} \in \ker(\mathrm{ev}_{\alpha})$. So there exists $f \in \mathbb{F}[x]$ such that $a_0 + a_1x + \cdots + a_{\ell-1}x^{\ell-1} = f \cdot m_{\alpha,\mathbb{F}}(x)$. Since $\deg(m_{\alpha,\mathbb{F}}(x)) = \ell$ and $\deg(a_0 + a_1x + \cdots + a_{\ell-1}x^{\ell-1}) \leq \ell - 1$

then f = 0 and $a_0 = a_1 = \cdots = a_{\ell-1} = 0$.

So $\{1, \alpha, \ldots, \alpha^{\ell-1}\}$ is linearly independent.

HW 4: Show that $m_{\alpha,\mathbb{F}}(x)$ exists.

Proof. To show: $m_{\alpha,\mathbb{F}}(x)$ exists (i.e. that ker(ev_{α}) is generated by a single element). Let $m(x) = c_0 + c_1 x + \cdots + c_\ell x^\ell \in \mathbb{F}[x]$ be a minimal degree element of ker(ev_{α}) with $c_\ell \neq 0$. Let

$$m_{\alpha,\mathbb{F}}(x) = c_{\ell}^{-1}m(x) = a_0 + a_1x + \dots + a_{\ell-1}x^{\ell-1} + x^{\ell}$$

To show: If $p(x) \in \ker(\operatorname{ev}_{\alpha}$ then there exists $g(x) \in \mathbb{F}[x]$ such that $p(x) = m_{\alpha,\mathbb{F}}](x)g(x)$. Assume $p(x) \in \ker(\operatorname{ev}_{\alpha})$. Write $p(x) = m_{\alpha,\mathbb{F}}(x)g(x) + r(x)$, with $\deg(r(x)) < \ell$. To show: r(x) = 0. Since $p(x) \in \ker(\operatorname{ev}_{\alpha})$ and $m_{\alpha,\mathbb{F}}(x)g(x) \in \ker(\operatorname{ev}_{\alpha})$ then $r(x) = p(x) - m_{\alpha,\mathbb{F}}(x)g(x) \in \ker(\operatorname{ev}_{\alpha})$. Since $m_{\alpha,\mathbb{F}}(x)$ is minimal degree of elements of $\ker(\operatorname{ev}_{\alpha})$ then r(x) = 0. So there exists $g(x) \in \mathbb{F}[x]$ such that $p(x) = m_{\alpha,\mathbb{F}}(x)g(x)$. So $p(x) \in (m_{\alpha,\mathbb{F}}(x))$.

HW 5: Show that $\mathbb{F}(\alpha) = \mathbb{F}[\alpha]$.

Proof. To show: $\mathbb{F}[\alpha]$ is a field. To show: If $\beta \in \mathbb{F}[\alpha]$ and $\beta \neq 0$ then $\beta^{-1} \in \mathbb{F}[\alpha]$. Assume $\beta \in \mathbb{F}[\alpha]$ and $\beta \neq 0$. The F-linear transformation of $\mathbb{F}[\alpha]$ given by multiplication by β is

$$\begin{aligned} \mathbb{F}[\alpha] & \stackrel{\cdot\beta}{\to} & \mathbb{F}[\alpha] \\ \gamma & \mapsto & \gamma\beta \end{aligned}$$

If $\gamma \in \mathbb{F}[\alpha]$ and $\gamma \beta = 0$ then $\gamma = -0$. So ker $(\cdot \beta) = 0$. Since $\mathbb{F}[\alpha]$ is a finite dimensional vector space over \mathbb{F} then $\operatorname{im}(\cdot \beta) = \mathbb{F}[\alpha]$. So the linear transformation $\cdot \beta$ is surjective. So $1 \in \operatorname{im}(\cdot \beta)$. So there exists $\gamma \in \mathbb{F}[\alpha]$ such that $\gamma \beta = 1$. Let $\beta^{-1} = \gamma$.

Some worked steps for the proof of Theorem 3.4

Let \mathbb{K} be a field.

• Let \mathbb{F} be a subfield of \mathbb{K} . The **Galois group of** \mathbb{K} over \mathbb{F} is

$$\operatorname{Gal}(\mathbb{F}) = \operatorname{Aut}_{\mathbb{F}}(\mathbb{K}) = \{ \sigma \in \operatorname{Aut}(\mathbb{K}) \mid \text{if } e \in \mathbb{F} \text{ then } \sigma(e) = e \}$$

• Let H be a subgroup of $Aut(\mathbb{K})$. The fixed field of H is

$$\operatorname{Fix}(H) = \mathbb{K}^{H} = \{ e \in \mathbb{K} \mid \text{if } \sigma \in H \text{ then } \sigma(e) = e \}.$$

HW 1: Show that $\operatorname{Aut}_{\mathbb{E}}(\mathbb{K})$ is a subgroup of $\operatorname{Aut}(\mathbb{K})$.

HW 2: Show that \mathbb{K}^H is a subfield of \mathbb{K} .

HW 3: Let $\mathbb{F} \subseteq \mathbb{K}$ be a subfield of \mathbb{K} . Show that $\operatorname{Fix}(\operatorname{Gal}(\mathbb{F}) \supseteq \mathbb{F}$.

Proof. To show: If $y \in \mathbb{F}$ then $y \in \text{Fix}(\text{Gal}(\mathbb{F}))$. Assume $y \in \mathbb{F}$, To show: $y \in \text{Fix}(\text{Gal}(\mathbb{F}))$. To show: If $\sigma \in \text{Gal}(\mathbb{F})$ then $\sigma(y) = y$. Assume $\sigma \in \text{Gal}(\mathbb{F})$. To show: $\sigma(y) = y$. Since $y \in F$ and $\sigma \in Aut_{\mathbb{F}}(\mathbb{K})$ then $\sigma(y) = y$. So $y \in \text{Fix}(\text{Gal}(\mathbb{F}))$. So $\text{Fix}(\text{Gal}(\mathbb{F})) \supseteq \mathbb{F}$.

HW 4: Let *H* be a subgroup of $Aut(\mathbb{K})$. Show that $Gal(Fix(H)) \supseteq H$.

Proof. To show: If $\sigma \in H$ then $\sigma \in \text{Gal}(\text{Fix}(H))$. Assume $\sigma \in H$. To show: $\sigma \in \text{Gal}(\text{Fix}(H))$. To show: If $y \in \text{Fix}(H)$ then $\sigma(y) = y$. Assume $y \in \text{Fix}(H)$. To show: $\sigma(y) = y$. Since $y \in \text{Fix}(H)$ then y satisfies: If $\sigma \in H$ then $\sigma(y) = y$. So $\sigma(y) = y$. So, If $\sigma \in H$ then $\sigma \in \text{Gal}(\text{Fix}(H))$. So $\text{Gal}(\text{Fix}(H)) \supseteq H$.

HW 5: Let \mathbb{F} and \mathbb{G} be subfields of \mathbb{K} and assume that $\mathbb{F} \subseteq \mathbb{G}$. Show that $\operatorname{Gal}(\mathbb{G}) \subseteq \operatorname{Gal}(\mathbb{F})$.

Proof. Assume that $\mathbb{F} \subseteq \mathbb{G}$. To show: $\operatorname{Gal}(\mathbb{G}) \subseteq \operatorname{Gal}(\mathbb{F})$. To show: If $\sigma \in \operatorname{Gal}(\mathbb{G})$ then $\sigma \in \operatorname{Gal}(\mathbb{F})$. Assume $\sigma \in \operatorname{Gal}(\mathbb{G})$. To show: $\sigma \in \operatorname{Gal}(\mathbb{F})$. To show: If $y \in \mathbb{F}$ then $\sigma(y) = y$. Assume $y \in \mathbb{F}$. To show: $\sigma(y) = y$. Since $\sigma \in \operatorname{Aut}_{\mathbb{G}}(\mathbb{K})$ and $y \in \mathbb{F}$ and $\mathbb{F} \subseteq \mathbb{G}$ then $\sigma(y) = y$. So $\sigma \in \operatorname{Gal}(\mathbb{F})$. So $\operatorname{Gal}(\mathbb{G}) \subseteq \operatorname{Gal}(\mathbb{F})$.

HW 6: Let G and H be subgroups of Aut(\mathbb{K})) and assume that $G \subseteq H$. Show that Fix(G) \supseteq Fix(H).

Proof. Assume $G \subseteq H$. To show: $\operatorname{Fix}(G) \supseteq \operatorname{Fix}(H)$. To show: If $y \in \operatorname{Fix}(G)$ then $y \in \operatorname{Fix}(H)$. Assume $y \in \operatorname{Fix}(G)$. To show: $y \in \operatorname{Fix}(H)$. To show: if $\sigma \in H$ then $\sigma(y) = y$. Assume $\sigma \in H$. To show: $\sigma(y) = y$. Since $y \in \operatorname{Fix}(G)$ and $\sigma \in H$ and $H \subseteq G$ then $\sigma(y) = y$. So $y \in \operatorname{Fix}(H)$. So $\operatorname{Fix}(G) \supseteq \operatorname{Fix}(H)$.

HW 7: Let *H* be a subgroup of $Aut(\mathbb{K})$). Show that Fix(Gal(Fix(H))) = Fix(H).

Proof. To show: (a) $\operatorname{Fix}(\operatorname{Gal}(\operatorname{Fix}(H))) \subseteq \operatorname{Fix}(H)$. (b) $\operatorname{Fix}(\operatorname{Gal}(\operatorname{Fix}(H))) \supseteq \operatorname{Fix}(H)$. (b) By HW 4, $\operatorname{Gal}(\operatorname{Fix}(H)) \supseteq H$. Thus, by HW 6, then $\operatorname{Fix}(\operatorname{Gal}(\operatorname{Fix}(H))) \subseteq \operatorname{Fix}(H)$. (a) Let $\mathbb{F} = \operatorname{Fix}(H)$.

By HW 3, $\mathbb{F} \subseteq \text{Fix}(\text{Gal}(\mathbb{F}))$.

So $Fix(H) \subseteq Fix(Gal(Fix(H)))$.

HW 8:. Let \mathbb{F} be a subfield of \mathbb{K} . Show that $\operatorname{Gal}(\operatorname{Fix}(\operatorname{Gal}(\mathbb{F}))) = \operatorname{Gal}(\mathbb{F})$.

Proof. To show: (a) $\operatorname{Gal}(\operatorname{Fix}(\operatorname{Gal}(\mathbb{F}))) \subseteq \operatorname{Gal}(\mathbb{F})$. (b) $\operatorname{Gal}(\operatorname{Fix}(\operatorname{Gal}(\mathbb{F}))) \supseteq \operatorname{Gal}(\mathbb{F})$. (b) By HW 3, $\operatorname{Fix}(\operatorname{Gal}(\mathbb{F})) \supseteq \mathbb{F}$. Thus, by HW 5, then $\operatorname{Gal}(\operatorname{Fix}(\operatorname{Gal}(\mathbb{F}))) \subseteq \operatorname{Gal}(\mathbb{F})$. (a) Let $H = \operatorname{Gal}(\mathbb{F})$. By HW 4, $H \subseteq \operatorname{Gal}(\operatorname{Fix}(H)$. So $\operatorname{Gal}(\mathbb{F}) \subseteq \operatorname{Gal}(\operatorname{Fix}(\operatorname{Gal}(H)))$.

HW 9: Let \mathbb{F} be a subfield of \mathbb{K} and let $\sigma \in Aut(\mathbb{K})$. Show that $Gal(\sigma(\mathbb{F})) = \sigma Gal(\mathbb{F})\sigma^{-1}$ (subgroups of $Aut(\mathbb{K})$).

Proof. Assume $\sigma \in Aut(\mathbb{K})$. To show: $\operatorname{Gal}(\sigma(\mathbb{F})) = \sigma \operatorname{Gal}(\mathbb{F})\sigma^{-1}$. To show: (a) $\operatorname{Gal}(\sigma(\mathbb{F})) \subseteq \sigma \operatorname{Gal}(\mathbb{F})\sigma^{-1}$. (b) $\operatorname{Gal}(\sigma(\mathbb{F})) \supseteq \sigma \operatorname{Gal}(\mathbb{F}) \sigma^{-1}$ (a) To show: $\operatorname{Gal}(\sigma(\mathbb{F})) \subseteq \sigma \operatorname{Gal}(\mathbb{F}) \sigma^{-1}$. To show: If $\tau \in \operatorname{Gal}(\sigma(\mathbb{F}))$ then $\tau \in \sigma \operatorname{Gal}(\mathbb{F})\sigma^{-1}$. Assume $\tau \in \operatorname{Gal}(\sigma(\mathbb{F}))$ To show: $\tau \in \sigma \operatorname{Gal}(\mathbb{F})\sigma^{-1}$. To show: $\sigma^{-1}\tau\sigma \in \operatorname{Gal}(\mathbb{F})$. To show: If $y \in \mathbb{F}$ then $\sigma^{-1}\tau\sigma(y) = y$. Assume $y \in \mathbb{F}$. To show: $\sigma^{-1}\tau\sigma(y) = y$. Since $\sigma(y) \in \sigma(\mathbb{F})$ and $\tau \in \operatorname{Gal}(\sigma\mathbb{F})$ then $\tau(\sigma(y)) = \sigma(y)$ and $\sigma^{-1}\tau\sigma(y) = \sigma^{-1}\sigma(y) = y.$ So $\sigma^{-1}\tau\sigma \in \operatorname{Gal}(\mathbb{F})$. So $\tau \in \sigma \operatorname{Gal}(\mathbb{F})\sigma^{-1}$. So $\operatorname{Gal}(\sigma(\mathbb{F})) \subseteq \sigma \operatorname{Gal}(\mathbb{F})\sigma^{-1}$. (b) To show: $\operatorname{Gal}(\sigma(\mathbb{F})) \supseteq \sigma \operatorname{Gal}(\mathbb{F}) \sigma^{-1}$. To show: If $\tau \in \sigma \operatorname{Gal}(\mathbb{F})\sigma^{-1}$ then $\tau \in \operatorname{Gal}(\sigma(\mathbb{F}))$. Assume $\tau \in \sigma \operatorname{Gal}(\mathbb{F})\sigma^{-1}$. To show: $\tau \in \operatorname{Gal}(\sigma \mathbb{F})$. To show: If $y \in \sigma(\mathbb{F})$ then $\tau(y) = y$. Assume $y \in \sigma(\mathbb{F})$. To show: $\tau(y) = y$. Let $\beta \in \mathbb{F}$ such that $y = \sigma(\beta)$ and let $\gamma \in \operatorname{Gal}(\mathbb{F})$ such that $\tau = \sigma \gamma \sigma^{-1}$. Then

$$\tau(y) = \sigma \gamma \sigma^{-1}(y) = \sigma \gamma \sigma^{-1}(\sigma(\beta)) = \sigma \gamma(\beta) = \sigma(\beta) = y.$$

 $\begin{array}{l} \text{So }\tau\in \operatorname{Gal}(\sigma\mathbb{F}).\\ \text{So }\operatorname{Gal}(\sigma(\mathbb{F}))\supseteq\sigma \text{Gal}(\mathbb{F})\sigma^{-1}.\\ \text{So }\operatorname{Gal}(\sigma(\mathbb{F}))=\sigma \text{Gal}(\mathbb{F})\sigma^{-1}. \end{array}$

HW 10: Let *H* be a subgroup of $\operatorname{Aut}(\mathbb{K})$ and let $\sigma \in \operatorname{Aut}(\mathbb{K})$. Show that $\operatorname{Fix}(\sigma H \sigma^{-1}) = \sigma(\operatorname{Fix}(H))$ (subfields of \mathbb{K}).

$$\begin{array}{l} Proof. \ \text{Assume } \sigma \in \operatorname{Aut}(\mathbb{K}).\\ \text{To show: } \operatorname{Fix}(\sigma H \sigma^{-1}) = \sigma(\operatorname{Fix}(H)).\\ \text{To show: } (a) \ \operatorname{Fix}(\sigma H \sigma^{-1}) \subseteq \sigma(\operatorname{Fix}(H)).\\ (b) \ \operatorname{Fix}(\sigma H \sigma^{-1}) \subseteq \sigma(\operatorname{Fix}(H)).\\ \text{(a) } \text{To show: } \operatorname{Fix}(\sigma H \sigma^{-1}) \subseteq \sigma(\operatorname{Fix}(H)).\\ \text{To show: } \operatorname{If} y \in \operatorname{Fix}(\sigma H \sigma^{-1}) \ \text{then } y \in \sigma(\operatorname{Fix}(H)).\\ \text{Assume } y \in \operatorname{Fix}(\sigma H \sigma^{-1}).\\ \text{To show: } y \in \sigma(\operatorname{Fix}(H)).\\ \text{To show: } f \tau \in H \ \text{then } \tau(\sigma^{-1}(y)) = \sigma^{-1}(y).\\ \text{Assume } \tau \in H.\\ \text{To show: } \tau(\sigma^{-1}(y)) = \sigma^{-1}(y).\\ \text{Since } y \in \operatorname{Fix}(\sigma H \sigma^{-1}) \ \text{and } \tau \in H \ \text{then } \sigma \tau \sigma^{-1}(y) = y \ \text{and} \\ \tau \sigma^{-1}(y) = \sigma^{-1} \sigma \tau \sigma^{-1}(y) = \sigma^{-1}(y).\\ \text{So } \operatorname{Fix}(\sigma H \sigma^{-1}) \subseteq \sigma(\operatorname{Fix}(H)).\\ \text{So } \operatorname{Fix}(\sigma H \sigma^{-1}) \subseteq \sigma(\operatorname{Fix}(H)).\\ \text{To show: } \operatorname{If } y \in \sigma(\operatorname{Fix}(H)).\\ \text{To show: } \operatorname{If } y \in \sigma(\operatorname{Fix}(H)).\\ \text{To show: } \operatorname{If } y \in \sigma(\operatorname{Fix}(H)) \ \text{then } y \in \operatorname{Fix}(\sigma H \sigma^{-1}).\\ \text{Assume } y \in \sigma(\operatorname{Fix}(H)).\\ \text{To show: } \operatorname{If } y \in \sigma(\operatorname{Fix}(H)).\\ \text{To show: } \operatorname{If } y \in \sigma(\operatorname{Fix}(H)).\\ \text{To show: } \operatorname{If } \tau \in \sigma H \sigma^{-1} \ \text{then } \tau(y) = y.\\ \text{To show: } \operatorname{If } \tau \in \sigma H \sigma^{-1}.\\ \text{To show: } \operatorname{Assume } \tau \in \sigma H \sigma^{-1}.\\ \text{To show: } \tau(y) = y.\\ \operatorname{Let } \gamma \in H \ \text{such that } \tau = \sigma \gamma \sigma^{-1} \ \text{and let } \beta \in \operatorname{Fix}(H) \ \text{such that } y = \sigma \beta.\\ \text{Since } \gamma \in H \ \text{and } \beta \in \operatorname{Fix}(H) \ \text{then } \gamma(\beta) = \beta \ \text{and} \end{array}$$

$$\tau(y) = \sigma \gamma \sigma^{-1}(y) = \sigma \gamma \sigma^{-1} \sigma(\beta) = \sigma \gamma(\beta) = \sigma(\beta) = y.$$

 $\begin{array}{l} \text{So } y \in \operatorname{Fix}(\sigma H \sigma^{-1}).\\ \text{So } \operatorname{Fix}(\sigma H \sigma^{-1}) \supseteq \sigma(\operatorname{Fix}(H)).\\ \text{So } \operatorname{Fix}(\sigma H \sigma^{-1}) = \sigma(\operatorname{Fix}(H)). \end{array}$

Some steps for the proof of Theorem 3.3:

HW: Show that $\operatorname{im}(\operatorname{ev}_{\alpha,\mathbb{F}}) = \mathbb{F}[\alpha]$. **HW:** Show that \mathbb{F} -span $\{1, \alpha, \alpha^2, \dots, \alpha^{\ell-1}\} = \mathbb{F}[\alpha]$. **HW:** Show that $\{1, \alpha, \alpha^2, \dots, \alpha^{\ell-1}\}$ is linearly independent in $\mathbb{F}[\alpha]$. **HW:** Show that $m_{\alpha,\mathbb{F}}(x)$ exists. **HW:** Show that $\mathbb{F}(\alpha) = \mathbb{F}[\alpha]$.

Some steps for the proof of Theorem 3.4

Let \mathbbm{K} be a field.

• Let \mathbb{F} be a subfield of \mathbb{K} . The **Galois group of** \mathbb{K} over \mathbb{F} is

$$\operatorname{Gal}(\mathbb{F}) = \operatorname{Aut}_{\mathbb{F}}(\mathbb{K}) = \{ \sigma \in \operatorname{Aut}(\mathbb{K}) \mid \text{if } e \in \mathbb{F} \text{ then } \sigma(e) = e \}.$$

• Let H be a subgroup of $Aut(\mathbb{K})$. The fixed field of H is

$$Fix(H) = \mathbb{K}^{H} = \{ e \in \mathbb{K} \mid \text{if } \sigma \in H \text{ then } \sigma(e) = e \}.$$

HW: Show that $\operatorname{Aut}_{\mathbb{E}}(\mathbb{K})$ is a subgroup of $\operatorname{Aut}(\mathbb{K})$.

HW: Show that \mathbb{K}^H is a subfield of \mathbb{K} .

HW: Let $\mathbb{F} \subseteq \mathbb{K}$ be a subfield of \mathbb{K} . Show that $\operatorname{Fix}(\operatorname{Gal}(\mathbb{F}) \supseteq \mathbb{F}$.

HW: Let *H* be a subgroup of $Aut(\mathbb{K})$. Show that $Gal(Fix(H)) \subseteq H$.

HW: Let \mathbb{F} and \mathbb{G} be subfields of \mathbb{K} and assume that $\mathbb{F} \subseteq \mathbb{G}$. Show that $\operatorname{Gal}(\mathbb{G}) \subseteq \operatorname{Gal}(\mathbb{F})$.

HW: Let G and H be subgroups of Aut(\mathbb{K})) and assume that $G \subseteq H$. Show that Fix(G) \supseteq Fix(H).

HW: Let H be a subgroup of $Aut(\mathbb{K})$). Show that Fix(Gal(Fix(H))) = Fix(H).

HW: Let \mathbb{F} be a subfield of \mathbb{K} . Show that $\operatorname{Gal}(\operatorname{Fix}(\operatorname{Gal}(\mathbb{F}))) = \operatorname{Gal}(\mathbb{F})$.

HW: Let \mathbb{F} be a subfield of \mathbb{K} and let $\sigma \in Aut(\mathbb{E})$. Show that $Gal(\sigma(\mathbb{F})) = \sigma Gal(\mathbb{F})\sigma^{-1}$ (subgroups of $Aut(\mathbb{K})$).

HW: Let *H* be a subgroup of Aut(\mathbb{K}) and let $\sigma \in Aut(\mathbb{E})$. Show that $Fix(\sigma H \sigma^{-1}) = \sigma(Fix(H))$ (subfields of \mathbb{K}).

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is the splitting field of a polynomial $f(x) \in \mathbb{F}[x]$ over \mathbb{F} and that f(x) factors as

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_\ell), \quad \text{with } \alpha_1, \dots, \alpha_\ell \in \mathbb{K}.$$

Show that $\mathbb{K} = \mathbb{F}(\alpha_1, \ldots, \alpha_\ell)$.

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} = \mathbb{F}(\alpha_1, \ldots, \alpha_\ell)$. Show that there exists $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$.

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is Galois. Show that there exists $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$.

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is Galois. Let $\gamma \in \mathbb{K}$ such that $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$. Let $G = \operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$. Show that

$$m_{\gamma,\mathbb{F}}(x) = \prod_{\beta \in G\gamma} (x - \beta)$$

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is Galois. Let $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$. Let $G = \operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$. Show that

$$\deg(m_{\gamma,\mathbb{F}}(x)) = |G|.$$

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is Galois. Let $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$. Let $G = \operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$. Show that

$$\dim_{\mathbb{F}}(\mathbb{K}) = |G|.$$

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is Galois. Let $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$. Let $G = \operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$. Let $G\gamma = \{g\gamma \mid g \in G\}$. Show that

$$\begin{array}{rccc} G & \to & G\gamma \\ g & \mapsto & g\gamma \end{array}$$

HW: Let \mathbb{F} be a subfield of \mathbb{K} and assume that $\mathbb{K} \supseteq \mathbb{F}$ is Galois. Let $\gamma \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\gamma)$. Show that $\operatorname{Fix}(\operatorname{Gal}(\mathbb{F})) = \mathbb{F}$.

HW: Let *H* be a finite subgroup of $Aut(\mathbb{K})$. Show that $\mathbb{K} \supseteq \mathbb{K}^H$ is a Galois extension.

HW: Let *H* be a finite subgroup of $Aut(\mathbb{K})$. Show that Gal(Fix(H)) = H.