1.13 Tutorial 11 MAST30005 Semester I, 2024

1. If R and S are rings, their product $R \times S=\{(r, s) \mid r \in R, s \in S\}$ is a ring with

$$
(r, s)+\left(r^{\prime}, s^{\prime}\right)=\left(r+r^{\prime}, s+s^{\prime}\right) \quad \text { and } \quad(r, s)\left(r^{\prime}, s^{\prime}\right)=\left(r r^{\prime}, s s^{\prime}\right)
$$

(a) Write down the additive and multiplicative identities in $R \times S$.
(b) Is $\mathbb{Z} / 8 \mathbb{Z}$ isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ (as rings)?
(c) Is $\mathbb{Z} / 6 \mathbb{Z}$ isomorphic to $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ (as rings)?
2. Let R and S be rings. Is the map

$$
\begin{aligned}
& \text { Is } \quad \begin{aligned}
R \\
\hline
\end{aligned} \underset{(r, 0)}{\rightarrow} \quad R \times S \quad \text { a ring homomorphism? } \\
& \text { Is } \quad \begin{array}{rlc}
R & \rightarrow R \times R \\
r & \mapsto & (r, r) \quad \text { a ring homomorphism? }
\end{array}
\end{aligned}
$$

3. Let R be a ring. If I, J are ideals of R, the sum of I and J is defined by

$$
I+J=\{x+y \mid x \in I, y \in J\} \subset R
$$

(a) Show that $I+J$ is an ideal of R.
(b) Prove the Chinese Remainder Theorem: If $I+J=R$ then $R /(I \cap J) \cong R / I \times R / J$ (as rings).
(c) The classical Chinese remainder theorem says that if m and n are coprime integers, then for any a, b, the system of equations $x \equiv a(\bmod m)$ and $x \equiv b(\bmod n)$ has a unique solution modulo mn. Show how this follows from the result called the Chinese remainder theorem above.
4. Find a greatest common divisor in $\mathbb{Z}[i]$ of $-1+7 i$ and $18-i$.
5. Let F be a field and $f(x) \in F[x]$ a polynomial such that $f(a) \neq 0$ for all $a \in F$. Show that if f has degree at most 3 , then $f(x)$ is irreducible.
6. Find all irreducible polynomials of degree at most 3 in $\mathbb{F}_{2}[x]$. Show that $1+x+x^{4}$ is irreducible in $\mathbb{F}_{2}[x]$.
7. Define $\mathbb{C}[t]$ and $\mathbb{C}[[t]]$.
(a) Show that $\mathbb{C}[t]$ and $\mathbb{C}[[t]]$ are integral domains.
(b) Determine $\mathbb{C}[t]^{\times}$and $\mathbb{C}[[t]]^{\times}$.
(c) Show that $\frac{1}{1-t} \in \mathbb{C}[[t]]$ and $e^{t} \in \mathbb{C}[[t]]$ and $\sin (t) \in \mathbb{C}[[t]$ and $\tan (t) \in \mathbb{C}[[t]]$.
(d) Show that $t^{-1} \notin \mathbb{C}[[t]]$ and $\cot (t) \notin \mathbb{C}[[t]]$.
(e) Let $\mathbb{C}(t)$ be the field of fractions of $\mathbb{C}[t]$ and let $\mathbb{C}((t))$ be the field of fractions of $\mathbb{C}[[t]]$. Show that

$$
\left.\mathbb{C}((t))=\{0\} \cup\left(\bigsqcup_{i \in \mathbb{Z}} t^{i} \mathbb{C}[t t]\right]^{\times}\right) .
$$

8. Let R be a nonzero ring. An element $a \in R$ is nilpotent if there exists $n \in \mathbb{Z}_{>0}$ such that $a^{n}=0$. Let $a \in R$. Prove that if a is nilpotent then $1+a$ is a unit.
9. Let a and b be integers with $\operatorname{gcd}(a, b)=1($ in $\mathbb{Z})$. Prove that the greatest common divisor of a and b in $\mathbb{Z}[i]$ is also 1 .
