1.13 Tutorial 11 MAST30005 Semester I, 2024

1. If R and S are rings, their product $R \times S = \{(r, s) \mid r \in R, s \in S\}$ is a ring with

$$(r,s) + (r',s') = (r+r',s+s')$$
 and $(r,s)(r',s') = (rr',ss').$

- (a) Write down the additive and multiplicative identities in $R \times S$.
- (b) Is $\mathbb{Z}/8\mathbb{Z}$ isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ (as rings)?
- (c) Is $\mathbb{Z}/6\mathbb{Z}$ isomorphic to $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (as rings)?

2. Let R and S be rings. Is the map

Is $\begin{array}{ccc} R & \rightarrow & R \times S \\ r & \mapsto & (r,0) \end{array}$ a ring homomorphism? Is $\begin{array}{ccc} R & \rightarrow & R \times R \\ r & \mapsto & (r,r) \end{array}$ a ring homomorphism?

3. Let R be a ring. If I, J are ideals of R, the sum of I and J is defined by

$$I + J = \{x + y \mid x \in I, y \in J\} \subset R.$$

- (a) Show that I + J is an ideal of R.
- (b) Prove the Chinese Remainder Theorem: If I + J = R then $R/(I \cap J) \cong R/I \times R/J$ (as rings).
- (c) The classical Chinese remainder theorem says that if m and n are coprime integers, then for any a, b, the system of equations $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$ has a unique solution modulo mn. Show how this follows from the result called the Chinese remainder theorem above.
- 4. Find a greatest common divisor in $\mathbb{Z}[i]$ of -1 + 7i and 18 i.
- 5. Let F be a field and $f(x) \in F[x]$ a polynomial such that $f(a) \neq 0$ for all $a \in F$. Show that if f has degree at most 3, then f(x) is irreducible.
- 6. Find all irreducible polynomials of degree at most 3 in $\mathbb{F}_2[x]$. Show that $1 + x + x^4$ is irreducible in $\mathbb{F}_2[x]$.
- 7. Define $\mathbb{C}[t]$ and $\mathbb{C}[[t]]$.
 - (a) Show that $\mathbb{C}[t]$ and $\mathbb{C}[[t]]$ are integral domains.
 - (b) Determine $\mathbb{C}[t]^{\times}$ and $\mathbb{C}[[t]]^{\times}$.
 - (c) Show that $\frac{1}{1-t} \in \mathbb{C}[[t]]$ and $e^t \in \mathbb{C}[[t]]$ and $\sin(t) \in \mathbb{C}[[t]]$ and $\tan(t) \in \mathbb{C}[[t]]$.
 - (d) Show that $t^{-1} \notin \mathbb{C}[[t]]$ and $\cot(t) \notin \mathbb{C}[[t]]$.
 - (e) Let $\mathbb{C}(t)$ be the field of fractions of $\mathbb{C}[t]$ and let $\mathbb{C}((t))$ be the field of fractions of $\mathbb{C}[[t]]$. Show that

$$\mathbb{C}((t)) = \{0\} \cup \Big(\bigsqcup_{i \in \mathbb{Z}} t^i \mathbb{C}[[t]]^{\times}\Big)$$

- 8. Let R be a nonzero ring. An element $a \in R$ is nilpotent if there exists $n \in \mathbb{Z}_{>0}$ such that $a^n = 0$. Let $a \in R$. Prove that if a is nilpotent then 1 + a is a unit.
- 9. Let a and b be integers with gcd(a, b) = 1 (in \mathbb{Z}). Prove that the greatest common divisor of a and b in $\mathbb{Z}[i]$ is also 1.