1.12 Tutorial 10 MAST30005 Semester I, 2024: Rings, homorphisms, units

- 1. Let R be a ring and let $a, b, c \in R$. Show that
 - (a) if a + b = a + c then b = c,
 - (b) a0 = 0 = 0a,
 - (c) a(-b) = (-a)b = -(ab),
 - (d) (-a)(-b) = ab.
- 2. True or false? (Be sure to include a proof.)
 - (a) Every field is also a ring.
 - (b) If R is a commutative ring and $a, b, c \in R$ and ac = bc then a b.
 - (c) The nonzero elements in a ring form a group under multiplication.
- 3. Let $\xi = (-1 + \sqrt{-3})/2 \in \mathbb{C}$. Using $\xi^2 + \xi + 1 = 0$, show that the Eisenstein integers

 $\mathbb{Z}[\xi] = \{a + b\xi \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} .

Does there exist a homomorphism from $\mathbb{Z}[\xi]$ to \mathbb{F}_2 ?

4. Determine,

$$\mathbb{Z}^{\times}, \qquad (\mathbb{Z}/5\mathbb{Z})^{\times}, \qquad (\mathbb{Z}/15\mathbb{Z})^{\times}, \qquad \mathbb{Q}^{\times}, \qquad \mathbb{Q}[x]^{\times}, \qquad \mathbb{Z}[i]^{\times}, \qquad \text{and} \qquad \mathbb{Z}[\sqrt{2}^{\times}, \sqrt{2}]$$

- 5. Let I be an ideal of a ring R. Show that if I contains a unit of R then I = R.
- 6. (a) Let $f = x^2$ and d = 2x + 1. Find $q, r \in \mathbb{Q}[x]$ such that f = qd + r and $\deg r < \deg d$.
 - (b) Show that $\mathbb{Q}[x]$ is a Euclidean domain with respect to the degree function.
 - (c) Show that $\mathbb{Z}[x]$ is not a Euclidean domain with respect to the degree function.
 - (d) Show that $\mathbb{Q}[x]$ is a PID.
 - (e) Show that $\mathbb{Z}[x]$ is not a PID.
 - (f) Explain exactly where the proof that $\mathbb{Q}[x]$ is a PID fails to show that $\mathbb{Z}[x]$ is PID.
- 7. Let $\zeta = e^{2\pi i/3}$. Show that the Eisenstein integers $\mathbb{Z}[\zeta]$ with the function

$$\begin{array}{rcccc} N \colon & \mathbb{Z}[\zeta] & \to & \mathbb{Z}_{\geq 0} \\ & z & \mapsto & |z|^2 \end{array}$$

is a Euclidean domain.

8. Let $R = \mathbb{R}[x]$.

- (a) Show that $\mathbb{R}[y]$ with the degree function is a Euclidean domain.
- (b) Show that $\mathbb{R}[y]$ is a PID.
- (c) Show that R[y] with the degree function is not a Euclidean domain.

- (d) Show that R[y] is not a PID.
- (e) Explain exactly where the proof that $\mathbb{R}[y]$ is a PID fails to show that R[y] is a PID.
- 9. Let $\phi \colon \mathbb{R}[x] \to \mathbb{C}$ be the \mathbb{R} -linear transformation given by $\phi(x) = i$. Determine ker (ϕ) and show that

 $\mathbb{R}[x]/(X^2+1) \cong \mathbb{C}$ as rings.

10. Show that every ideal in $\mathbb{Z}/12\mathbb{Z}$ is principal. Is $\mathbb{Z}/12\mathbb{Z}$ a PID?