1.8 Lecture 8: Reduction to diagonal for PIDs: Smith normal form

Let \mathbb{F} be a field. The set of monic polynomials with coefficients in \mathbb{F} is

 $\mathbb{F}[x]_{\text{monic}} = \{ x^{\ell} + c_{\ell-1} x^{\ell-1} + \dots + c_1 x + c_0 \mid c_0, \dots, c_{\ell-1} \in \mathbb{F} \} \cup \{0\}.$

Theorem 1.20. (Smith normal form) Let $t, s \in \mathbb{Z}_{>0}$.

(a) Let $A \in M_{t \times s}(\mathbb{Z})$ and let $r = \min(t, s)$. Then there exist $P \in GL_t(\mathbb{Z})$ and $Q \in GL_s(\mathbb{Z})$ and $d_1, \ldots, d_r \in \mathbb{Z}_{\geq 0}$ such that $d_1\mathbb{Z} \supseteq d_2\mathbb{Z} \supseteq \cdots \supseteq d_k\mathbb{Z}$ and

A = PDQ, where $D = \operatorname{diag}(d_1, \ldots, d_r)$.

(b) Let $A \in M_{t \times s}(\mathbb{F}[x])$ and let $r = \min(t, s)$. Then there exist $P \in GL_t(\mathbb{F}[x])$ and $Q \in GL_s(\mathbb{F}[x])$ and $d_1, \ldots, d_r \in \mathbb{F}[x]_{\text{monic}}$ such that $d_1\mathbb{F}[x] \supseteq d_2\mathbb{F}[x] \supseteq \cdots \supseteq d_k\mathbb{F}[x]$ and

A = PDQ, where $D = \operatorname{diag}(d_1, \ldots, d_r)$.

(a) Let \mathbb{A} be a PID and identify $\mathbb{A}/\mathbb{A}^{\times}$ with a specific choice of a set of representatives of the elements of $\mathbb{A}/\mathbb{A}^{\times}$. Let $A \in M_{t \times s}(\mathbb{A})$ and let $r = \min(t, s)$. Then there exist $P \in GL_t(\mathbb{A})$ and $Q \in GL_s(\mathbb{A})$ and $d_1, \ldots, d_r \in \mathbb{A}/\mathbb{A}^{\times}$ such that $d_1 \mathbb{A} \supseteq d_2 \mathbb{A} \supseteq \cdots \supseteq d_k \mathbb{A}$ and

$$A = PDQ$$
, where $D = \operatorname{diag}(d_1, \ldots, d_r)$.

A principal ideal domain (PID) is a commutative ring A such that

(a) If $a, b, c \in \mathbb{A}$ and $c \neq 0$ and ac = bc then a = b,

(b) If I is an ideal of \mathbb{A} then there exists $m \in \mathbb{A}$ such that $I = m\mathbb{A}$, where $m\mathbb{A} = \{cm \mid c \in \mathbb{A}\}$. Let \mathbb{A} be a PID.

• The group of units of \mathbb{A} is

 $\mathbb{A}^{\times} = \{ c \in \mathbb{A} \mid \text{there exists } b \in \mathbb{A} \text{ with } bc = cb = 1 \}.$

• The set of \mathbb{A}^{\times} -orbits in \mathbb{A} is

$$\mathbb{A}/\mathbb{A}^{\times} = \{ d\mathbb{A}^{\times} \mid d \in \mathbb{A} \}, \quad \text{where} \quad d\mathbb{A}^{\times} = \{ dc \mid c \in \mathbb{A}^{\times} \}.$$

HW: Let $J \subseteq \mathbb{A}$. Show that J is an ideal of \mathbb{A} if and only if J is an \mathbb{A} -submodule of \mathbb{A} . **HW:** Show that

and

$$\begin{cases} \text{ideals of } \mathbb{F}[x] \} & \leftrightarrow & \mathbb{F}[x]/\mathbb{F}[x]^{\times} & \leftrightarrow & \mathbb{F}[x]_{\text{monic}} \\ f(x)\mathbb{F}[x] & \leftrightarrow & \{cf(x) \mid c \in \mathbb{F}^{\times} \} & \leftarrow & f(x) \end{cases} \text{ are bijections.}$$

HW: Let \mathbb{A} be a PID. For the $d \in \mathbb{A}$, the \mathbb{A}^{\times} -orbit of d is $d\mathbb{A}^{\times} = \{dc \mid c \in \mathbb{A}^{\times}\}$. Show that

1.8.1 An example of reduction to diagonal over $\mathbb Z$

Let

$$x_1(c) = \begin{pmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad L_1(c) = \begin{pmatrix} 1 & 0 & 0 \\ c & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad y_1(c) = \begin{pmatrix} c & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

and

$$x_2(c) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}, \qquad L_2(c) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c & 1 \end{pmatrix}, \qquad y_2(c) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

Each of these matrices has determinant ± 1 and is an element of $GL_3(\mathbb{Z})$. Then

$$\begin{pmatrix} 11 & -4 & 7 \\ -1 & 2 & 1 \\ 3 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix} \begin{pmatrix} 11 & -4 & 7 \\ -1 & 2 & 1 \\ 0 & 6 & 6 \end{pmatrix}$$

$$= L_2(3) \begin{pmatrix} -11 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 & 1 \\ 0 & 18 & 18 \\ 0 & 6 & 6 \end{pmatrix}$$

$$= L_2(3)y_2(-11) \begin{pmatrix} -1 & 0 & 1 \\ 0 & 18 & 18 \\ 0 & 6 & 6 \end{pmatrix} \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= L_2(3)y_2(-11) \begin{pmatrix} -1 & 1 & 0 \\ 0 & 18 & 18 \\ 0 & 6 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 18 & 18 \\ 0 & 6 & 6 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} y_2(0)x_1(-2)$$

$$= L_2(3)y_2(-11) \begin{pmatrix} -1 & 0 & 0 \\ 0 & 18 & 18 \\ 0 & 6 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} x_1(-1)y_2(0)x_1(-2)$$

$$= L_2(3)y_2(-11) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 18 & 0 \end{pmatrix} x_2(1)x_1(-1)y_2(0)x_1(-2)$$

$$= L_2(3)y_2(-11)y_2(0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 18 & 0 \end{pmatrix} x_2(1)y_2(0)x_1(-1)y_2(0)x_1(-2)$$

$$= L_2(3)y_2(-11)y_2(0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix} y_2(0)x_2(1)y_2(0)x_1(-1)y_2(0)x_1(-2)$$

Letting $P = L_2(3)y_2(-11)y_2(0)L_2(3)$ and $Q = y_2(0)x_2(1)y_2(0)x_1(-1)y_2(0)x_1(-2)$ then

$$P, Q \in GL_3(\mathbb{Z}) \text{ and } \begin{pmatrix} 11 & -4 & 7\\ -1 & 2 & 1\\ 3 & 0 & 3 \end{pmatrix} = P \begin{pmatrix} -1 & 0 & 0\\ 0 & 6 & 0\\ 0 & 0 & 0 \end{pmatrix} Q$$

and $\mathbb{Z} = -1 \cdot \mathbb{Z} \supseteq 6\mathbb{Z} \supseteq 0\mathbb{Z} = \{0\}$