1.8 Lecture 8: Reduction to diagonal for PIDs: Smith normal form

Let \mathbb{F} be a field. The set of monic polynomials with coefficients in \mathbb{F} is

$$
\mathbb{F}[x]_{\text {monic }}=\left\{x^{\ell}+c_{\ell-1} x^{\ell-1}+\cdots+c_{1} x+c_{0} \mid c_{0}, \ldots, c_{\ell-1} \in \mathbb{F}\right\} \cup\{0\} .
$$

Theorem 1.20. (Smith normal form) Let $t, s \in \mathbb{Z}_{>0}$.
(a) Let $A \in M_{t \times s}(\mathbb{Z})$ and let $r=\min (t, s)$. Then there exist $P \in G L_{t}(\mathbb{Z})$ and $Q \in G L_{s}(\mathbb{Z})$ and $d_{1}, \ldots, d_{r} \in \mathbb{Z}_{\geq 0}$ such that $d_{1} \mathbb{Z} \supseteq d_{2} \mathbb{Z} \supseteq \cdots \supseteq d_{k} \mathbb{Z}$ and

$$
A=P D Q, \quad \text { where } \quad D=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right)
$$

(b) Let $A \in M_{t \times s}(\mathbb{F}[x])$ and let $r=\min (t, s)$. Then there exist $P \in G L_{t}(\mathbb{F}[x])$ and $Q \in G L_{s}(\mathbb{F}[x])$ and $d_{1}, \ldots, d_{r} \in \mathbb{F}[x]_{\text {monic }}$ such that $d_{1} \mathbb{F}[x] \supseteq d_{2} \mathbb{F}[x] \supseteq \cdots \supseteq d_{k} \mathbb{F}[x]$ and

$$
A=P D Q, \quad \text { where } \quad D=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right) \text {. }
$$

(a) Let \mathbb{A} be a PID and identify $\mathbb{A} / \mathbb{A}^{\times}$with a specific choice of a set of representatives of the elements of $\mathbb{A} / \mathbb{A}^{\times}$. Let $A \in M_{t \times s}(\mathbb{A})$ and let $r=\min (t, s)$. Then there exist $P \in G L_{t}(\mathbb{A})$ and $Q \in G L_{s}(\mathbb{A})$ and $d_{1}, \ldots, d_{r} \in \mathbb{A} / \mathbb{A}^{\times}$such that $d_{1} \mathbb{A} \supseteq d_{2} \mathbb{A} \supseteq \cdots \supseteq d_{k} \mathbb{A}$ and

$$
A=P D Q, \quad \text { where } \quad D=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right) \text {. }
$$

A principal ideal domain (PID) is a commutative ring \mathbb{A} such that
(a) If $a, b, c \in \mathbb{A}$ and $c \neq 0$ and $a c=b c$ then $a=b$,
(b) If I is an ideal of \mathbb{A} then there exists $m \in \mathbb{A}$ such that $I=m \mathbb{A}$, where $m \mathbb{A}=\{c m \mid c \in \mathbb{A}\}$.

Let \mathbb{A} be a PID.

- The group of units of \mathbb{A} is

$$
\mathbb{A}^{\times}=\{c \in \mathbb{A} \mid \text { there exists } b \in \mathbb{A} \text { with } b c=c b=1\}
$$

- The set of \mathbb{A}^{\times}-orbits in \mathbb{A} is

$$
\mathbb{A} / \mathbb{A}^{\times}=\left\{d \mathbb{A}^{\times} \mid d \in \mathbb{A}\right\}, \quad \text { where } \quad d \mathbb{A}^{\times}=\left\{d c \mid c \in \mathbb{A}^{\times}\right\}
$$

HW: Let $J \subseteq \mathbb{A}$. Show that J is an ideal of \mathbb{A} if and only if J is an \mathbb{A}-submodule of \mathbb{A}.
HW:. Show that

$$
\begin{array}{ccccc}
\{\text { ideals of } \mathbb{Z}\} & \leftrightarrow & \mathbb{Z} / \mathbb{Z}^{\times} & \leftrightarrow & \mathbb{Z}_{\geq 0} \\
m \mathbb{Z} & \leftrightarrow\{m,-m\} & \leftrightarrow & m
\end{array} \text { are bijections }
$$

and

$$
\begin{array}{ccccc}
\{\text { ideals of } \mathbb{F}[x]\} & \leftrightarrow & \mathbb{F}[x] / \mathbb{F}[x]^{\times} & \leftrightarrow \mathbb{F}[x]_{\text {monic }} & \text { are bijections. } \\
f(x) \mathbb{F}[x] & \leftrightarrow\left\{c f(x) \mid c \in \mathbb{F}^{\times}\right\} & \leftrightarrow & f(x) &
\end{array}
$$

HW: Let \mathbb{A} be a PID. For the $d \in \mathbb{A}$, the \mathbb{A}^{\times}-orbit of d is $d \mathbb{A}^{\times}=\left\{d c \mid c \in \mathbb{A}^{\times}\right\}$. Show that

$$
\begin{array}{cl}
\{\text { ideals of } \mathbb{A}\} & \leftrightarrow \mathbb{A} / \mathbb{A}^{\times} \\
d \mathbb{A} & \leftrightarrow d \mathbb{A}^{\times} \quad \text { is a bijection. }
\end{array}
$$

1.8.1 An example of reduction to diagonal over \mathbb{Z}

Let

$$
x_{1}(c)=\left(\begin{array}{ccc}
1 & c & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad L_{1}(c)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
c & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad y_{1}(c)=\left(\begin{array}{ccc}
c & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and

$$
x_{2}(c)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right), \quad L_{2}(c)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & c & 1
\end{array}\right), \quad y_{2}(c)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Each of these matrices has determinant ± 1 and is an element of $G L_{3}(\mathbb{Z})$. Then

$$
\begin{aligned}
& \left(\begin{array}{ccc}
11 & -4 & 7 \\
-1 & 2 & 1 \\
3 & 0 & 3
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right)\left(\begin{array}{ccc}
11 & -4 & 7 \\
-1 & 2 & 1 \\
0 & 6 & 6
\end{array}\right) \\
& =L_{2}(3)\left(\begin{array}{ccc}
-11 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 2 & 1 \\
0 & 18 & 18 \\
0 & 6 & 6
\end{array}\right) \\
& =L_{2}(3) y_{2}(-11)\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 18 & 18 \\
0 & 6 & 6
\end{array}\right)\left(\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =L_{2}(3) y_{2}(-11)\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 18 & 18 \\
0 & 6 & 6
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) x_{1}(-2) \\
& =L_{2}(3) y_{2}(-11)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 18 & 18 \\
0 & 6 & 6
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) y_{2}(0) x_{1}(-2) \\
& =L_{2}(3) y_{2}(-11)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 18 & 0 \\
0 & 6 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) x_{1}(-1) y_{2}(0) x_{1}(-2) \\
& =L_{2}(3) y_{2}(-11)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 6 & 0 \\
0 & 18 & 0
\end{array}\right) x_{2}(1) x_{1}(-1) y_{2}(0) x_{1}(-2) \\
& =L_{2}(3) y_{2}(-11) y_{2}(0)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 0
\end{array}\right) x_{2}(1) y_{2}(0) x_{1}(-1) y_{2}(0) x_{1}(-2) \\
& =L_{2}(3) y_{2}(-11) y_{2}(0) L_{2}(3)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 0
\end{array}\right) y_{2}(0) x_{2}(1) y_{2}(0) x_{1}(-1) y_{2}(0) x_{1}(-2)
\end{aligned}
$$

Letting $P=L_{2}(3) y_{2}(-11) y_{2}(0) L_{2}(3)$ and $Q=y_{2}(0) x_{2}(1) y_{2}(0) x_{1}(-1) y_{2}(0) x_{1}(-2)$ then

$$
P, Q \in G L_{3}(\mathbb{Z}) \text { and } \quad\left(\begin{array}{ccc}
11 & -4 & 7 \\
-1 & 2 & 1 \\
3 & 0 & 3
\end{array}\right)=P\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 0
\end{array}\right) Q
$$

and $\mathbb{Z}=-1 \cdot \mathbb{Z} \supseteq 6 \mathbb{Z} \supseteq 0 \mathbb{Z}=\{0\}$

