### 19.6.3 Smith Normal form

110. Determine the Jordan normal form of the matrix $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$ by calculating the invariant factor matrix of $X-A$.
111. Find all possible Jordan normal forms for a matrices with characteristic polynomial $(t+2)^{2}(t-5)^{3}$.
112. Find the Smith normal form of $A=\left(\begin{array}{ccc}5 & -4 & 1 \\ -1 & -1 & -2 \\ 3 & 0 & 3\end{array}\right)$ over $\mathbb{Z}$.
113. Find the rational canonical form of $A=\left(\begin{array}{ccc}5 & -4 & 1 \\ -1 & -1 & -2 \\ 3 & 0 & 3\end{array}\right)$ over $\mathbb{Q}$.
114. Find the Jordan canonical form of $A=\left(\begin{array}{ccc}5 & -4 & 1 \\ -1 & -1 & -2 \\ 3 & 0 & 3\end{array}\right)$ over $\mathbb{C}$.
115. Find the Smith normal form of $\left(\begin{array}{ccc}11 & -4 & 7 \\ -1 & 2 & 1 \\ 3 & 0 & 3\end{array}\right)$ over $\mathbb{Z}$.
116. Let $A=\left(\begin{array}{lll}7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3\end{array}\right)$. Find $L, R \in G L_{3}(\mathbb{Z})$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Z}_{\geq 0}$ such that $d_{3} \mathbb{Z} \subseteq d_{2} \mathbb{Z} \subseteq d_{1} \mathbb{Z}$ and $L A R=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
117. Let $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$. Find $L, R \in G L_{2}(\mathbb{Z})$ and $d_{1}, d_{2} \in \mathbb{Z}_{\geq 0}$ such that $d_{2} \mathbb{Z} \subseteq d_{1} \mathbb{Z}$ and $L A R=$ $\operatorname{diag}\left(d_{1}, d_{2}\right)$.
118. Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$. Find $L \in G L_{2}(\mathbb{Z})$ and $R \in G L_{3}(\mathbb{Z})$ and $d_{1}, d_{2} \in \mathbb{Z}_{\geq 0}$ such that $d_{2} \mathbb{Z} \subseteq d_{1} \mathbb{Z}$ and $L A R=\operatorname{diag}\left(d_{1}, d_{2}\right)$.
119. Let $A=\left(\begin{array}{ccc}-4 & -6 & 7 \\ 2 & 2 & 4 \\ 6 & 6 & 15\end{array}\right)$. Find $L, R \in G L_{3}(\mathbb{Z})$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Z}_{\geq 0}$ such that $d_{3} \mathbb{Z} \subseteq d_{2} \mathbb{Z} \subseteq d_{1} \mathbb{Z}$ and $L A R=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
120. Let $R=\mathbb{Q}[X]$. Let $A=\left(\begin{array}{ccc}1-X & 1+X & X \\ X & 1-X & 1 \\ 1+X & 2 X & 1\end{array}\right)$. Find $P, Q \in G L_{3}(R)$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Q}[X]_{\text {monic }}$ such that $d_{3} R \subseteq d_{2} R \subseteq d_{1} R$ and $P A Q=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
121. Let $R=\mathbb{Q}[X]$. Let $A=\left(\begin{array}{ccc}X & 1 & -2 \\ -3 & X+4 & -6 \\ -2 & 2 & X-3\end{array}\right)$. Find $P, Q \in G L_{3}(R)$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Q}[X]_{\text {monic }}$ such that $d_{3} R \subseteq d_{2} R \subseteq d_{1} R$ and $P A Q=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
122. Let $R=\mathbb{Q}[X]$. Let $A=\left(\begin{array}{ccc}X & 0 & 0 \\ 0 & 1-X & 0 \\ 0 & 0 & 1-X^{2}\end{array}\right)$. Find $P, Q \in G L_{3}(R)$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Q}[X]_{\text {monic }}$ such that $d_{3} R \subseteq d_{2} R \subseteq d_{1} R$ and $P A Q=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
123. Let $X$ be a $n \times m$ matrix with entries in a ring $R$. Define an ideal $d_{1}(X)$ to be the ideal in $R$ generated by all entries of $X$. Let $A$ and $B$ be invertible matrices (of the appropriate sizes) with entries in $R$. Prove that $d_{1}(A X B)=d_{1}(X)$.
124. With notation as in Question 123, let $d_{k}(X)$ be the ideal in $R$ generated by all $k \times k$ minors in $X$. Prove that $d_{k}(A X B)=d_{k}(X)$.
125. Use the previous result to show that the elements $d_{i}$ in Smith Normal Form are unique up to associates.
