19.7.6 Rings $\mathbb{Z}[\sqrt{d}]$ and $\mathbb{Z}[\frac{1}{2} + \frac{\sqrt{d}}{2}]$

- 225. Show that $\mathbb{Z}\left[\frac{1}{2} + \frac{1}{2}\sqrt{-19}\right]$ is a PID that is not a Euclidean domain.
- 226. Let $\zeta = \frac{1+\sqrt{-3}}{2}$ and let $R = \mathbb{Z}[\zeta]$. Prove that the rings $R/(1+\zeta)R$ and $\mathbb{Z}/3\mathbb{Z}$ are isomorphic.
- 227. Let $\xi = (-1 + \sqrt{-3})/2 \in \mathbb{C}$. Consider the **Eisenstein integers**

$$\mathbb{Z}[\xi] = \{a + b\xi \mid a, b \in \mathbb{Z}\}.$$

Show that $\mathbb{Z}[\xi]$ is a subring of \mathbb{C} . (Hint: $\xi^2 + \xi + 1 = 0$). Does there exist a homomorphism from $\mathbb{Z}[\xi]$ to \mathbb{F}_2 ?

- 228. What are the units in the following rings?
 - (a) \mathbb{Z}
- (b) $\mathbb{Z}/5\mathbb{Z}$
- (c) $\mathbb{Z}/15\mathbb{Z}$
- $(d) \mathbb{Q}$
- 229. There are four rings (up to isomorphism) with four elements. Write down as much of the addition and multiplication tables of each of them as you can.
- 230. Find all the units in $\mathbb{Z}[\mathbf{i}] = \{a + b\mathbf{i} \mid a, b \in \mathbb{Z}\}$ (where $\mathbf{i}^2 = -1$). (It might help to use the absolute value.)
- 231. Consider the ring

$$\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{R}.$$

- (a) Find a unit in $\mathbb{Z}[\sqrt{2}]$ other than ± 1 .
- (b) Produce infinitely many units in $\mathbb{Z}[\sqrt{2}]$.
- 232. Pick your favourite ring amongst $\mathbb{Z}[e^{\frac{2\pi i}{3}}]$ and $\mathbb{Z}[\sqrt{-2}]$. Show that this ring is Euclidean with respect to the function $|z|^2$.
- 233. Let $d \in \mathbb{Z}$ be square-free and let $R = \mathbb{Z}[\sqrt{d}]$. Let $a \in R$ with $a \neq 0$ and $a \notin R^{\times}$. Show that a can be written as a product of irreducibles.
- 234. Show that $\mathbb{Z}[\sqrt{-7}]$ is not a unique factorization domain by using the identity $(1+\sqrt{-7})(1-\sqrt{-7})=2\cdot 2\cdot 2$ and the norm function $\phi\colon \mathbb{Z}[\sqrt{-7}]\to \mathbb{Z}$ given by $\phi(m+n\sqrt{-7})=m^2+7n^2$.
- 235. Prove that $I = \{m + n\sqrt{-7} \mid m \in 7\mathbb{Z}\}$ is an ideal of $\mathbb{Z}[\sqrt{-7}]$ and determine whether I is a principal ideal.
- 236. Prove that $\mathbb{Z}[\sqrt{-7}]$ is not a PID.
- 237. The ring $R = \mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain with size function $N: \mathbb{Z}[\sqrt{-2}] \to \mathbb{Z}_{\geq 0}$ given by

$$N(m + n\sqrt{-2}) = m^2 + 2n^2.$$

- (a) Show that $1 + \sqrt{-2}$ and $1 + 2\sqrt{-2}$ are irreducible in R.
- (b) Prove that the units in R are 1 and -1.
- (c) Prove that the ideal I generated by the two elements $2+2\sqrt{-2}$ and $4+3\sqrt{-2}$ is the principal ideal $\sqrt{-2}R$.
- 238. Let $R = \mathbb{Z}[\sqrt{-5}]$.

- (a) Show that 2R is not prime and that 11R is prime.
- (b) Let $I = 2R + (1 + \sqrt{-5})R$ and $J = 2R + (1 \sqrt{-5})R$. Let IJ be the ideal of R generated by the set $\{i \cdot j \mid i \in I, j \in J\}$. Show that 2R = IJ and that I is prime.
- 239. Let $\eta = \frac{1}{2}(1 + \sqrt{-19})$ and let $\mathbb{Z}[\eta] = \{x + y\eta \mid x, y \in \mathbb{Z}\}.$
 - (a) Determine $\mathbb{Z}[\eta]^{\times}$.
 - (b) Show that 2 and 3 are irreducible in $\mathbb{Z}[\eta]$.
 - (c) Let $N: \mathbb{C} \to \mathbb{R}$ be given by $N(z) = z\bar{z}$. Let I be an ideal of $\mathbb{Z}[\eta]$. Let $a \in I$ be such that N(a) is minimal in $\{N(b) \mid b \in \mathbb{Z}[\eta] \{0\}\}$. Show that

$$I = a\mathbb{Z}[\eta].$$

- (d) Show that $\mathbb{Z}[\eta]$ is a PID and $\mathbb{Z}[\eta]$ is not a Euclidean domain.
- 240. Let $R = \mathbb{Z}[\sqrt{2}]$.
 - (a) Show that the ring R is a Euclidean domain with size function $N(a + b\sqrt{2}) = |a^2 + 2b^2|$.
 - (b) Compute $\gcd(7, -29 + 26\sqrt{2}),$
 - (c) Prove that there is an isomorphism

$$\frac{R}{(\sqrt{2}-3)R} \cong \mathbb{Z}/7\mathbb{Z}.$$