2.12 Proof of properties of primitive polynomials

Lemma 2.13. Let R be a UFD. For each irreducible element $p \in R$ let

$$
\begin{array}{ccccccc}
R & \rightarrow & R / p R \\
c & \mapsto & \bar{c}=c+p R & \text { and } & \pi_{p}: & R[x] & \rightarrow \\
c_{0}+\cdots+c_{k} x^{k} & \mapsto & \overline{c_{0}}+\cdots+\overline{c_{k}} x^{k} & \frac{R}{p R}[x]
\end{array}
$$

be the quotient map and the corresponding homomorphism between polynomial rings.
Let $f(x) \in R[x]$. Then $f(x)$ is not primitive if and only if

$$
\text { there exists an irreducible element } p \in R \text { such that } \hat{\pi}_{p}(f(x))=0 \text {. }
$$

Proof.
\Rightarrow : Assume $f(x)=c_{0}+c_{1} x+\cdots+c_{k} x^{k}$ is not primitive.
Then there exists $p \in R$ irreducible such that p divides c_{0}, p divides c_{1}, \ldots, p divides c_{k}.
So $c_{0}, c_{1}, \ldots, c_{k} \in p R$.
So $\pi_{p}\left(c_{0}\right)=\pi_{p}\left(c_{1}\right)=\cdots=\pi_{p}\left(c_{k}\right)=0$.
So $\hat{\pi}_{p}(f(x))=\pi_{p}\left(c_{0}\right)+\pi_{p}\left(c_{1}\right) x+\cdots+\pi_{p}\left(c_{k}\right) x^{k}=0$.
\Leftarrow : Assume that $f(x)=c_{0}+c_{1} x+\cdots+c_{k} x^{k}$ and that there exists an irreducible element $p \in R$ such that $\hat{\pi}_{p}(f(x))=0$.
Then $\pi_{p}\left(c_{0}\right)=\pi_{p}\left(c_{1}\right)=\cdots=\pi_{p}\left(c_{k}\right)=0$.
So $c_{0}, c_{1}, \ldots, c_{k} \in p R$.
So p divides c_{0}, p divides c_{1}, \ldots, and p divides c_{k}.
So $f(x)$ is not primitive.
Lemma 2.14. (Gauss' Lemma) Let R be a UFD. Let $f(x), g(x) \in R[x]$ be primitive polynomials. Then $f(x) g(x)$ is a primitive polynomial.

Proof. Proof by contrapositive:
To show: If $f(x) g(x)$ is not primitive then either $f(x)$ is not primitive or $g(x)$ is not primitive.
Assume $f(x) g(x)$ is not primitive.
Then, by Lemma 2.13, there exists an irreducible element $p \in R$ such that

$$
\hat{\pi}_{p}(f(x) g(x))=0, \quad \text { where } \quad \hat{\pi}_{p}: R[x] \rightarrow \frac{R}{p R}[x]
$$

is the homomorphism between polynomial rings induced by the quotient map $\pi_{p}: R \rightarrow R / p R$. Since $\hat{\pi}_{p}$ is a homomorphism,

$$
\hat{\pi}_{p}(f(x) g(x))=\hat{\pi}_{p}(f(x)) \hat{\pi}_{p}(g(x))=0
$$

By Lemma 16.6, since p is irreducible then $p R$ is a prime ideal.
Thus, by Theorem 4.47, $R / p R$ and $\frac{R}{p R}[x]$ are integral domains.
So either

$$
\hat{\pi}_{p}(f(x))=0 \quad \text { or } \quad \hat{\pi}_{p}(g(x))=0
$$

Thus, by Lemma 2.13 ,
either $f(x)$ is not primitive or $g(x)$ is not primitive.

