2.12 Proof of properties of primitive polynomials

Lemma 2.13. Let R be a UFD. For each irreducible element $p \in R$ let

be the quotient map and the corresponding homomorphism between polynomial rings. Let $f(x) \in R[x]$. Then f(x) is not primitive if and only if

there exists an irreducible element $p \in R$ such that $\hat{\pi}_p(f(x)) = 0$.

Proof.

 $\Rightarrow: \text{ Assume } f(x) = c_0 + c_1 x + \dots + c_k x^k \text{ is not primitive.}$ Then there exists $p \in R$ irreducible such that p divides c_0, p divides c_1, \dots, p divides c_k . So $c_0, c_1, \dots, c_k \in pR$. So $\pi_p(c_0) = \pi_p(c_1) = \dots = \pi_p(c_k) = 0$. So $\hat{\pi}_p(f(x)) = \pi_p(c_0) + \pi_p(c_1)x + \dots + \pi_p(c_k)x^k = 0$.

 $\begin{array}{l} \leftarrow: \text{ Assume that } f(x) = c_0 + c_1 x + \dots + c_k x^k \text{ and that there exists an irreducible element } p \in R \text{ such that } \hat{\pi}_p(f(x)) = 0. \\ \text{Then } \pi_p(c_0) = \pi_p(c_1) = \dots = \pi_p(c_k) = 0. \\ \text{So } c_0, c_1, \dots, c_k \in pR. \\ \text{So } p \text{ divides } c_0, p \text{ divides } c_1, \dots, \text{ and } p \text{ divides } c_k. \\ \text{So } f(x) \text{ is not primitive.} \end{array}$

Lemma 2.14. (*Gauss' Lemma*) Let R be a UFD. Let $f(x), g(x) \in R[x]$ be primitive polynomials. Then f(x)g(x) is a primitive polynomial.

Proof. Proof by contrapositive:

To show: If f(x)g(x) is not primitive then either f(x) is not primitive or g(x) is not primitive. Assume f(x)g(x) is not primitive.

Then, by Lemma 2.13, there exists an irreducible element $p \in R$ such that

$$\hat{\pi}_p(f(x)g(x)) = 0, \quad \text{where} \quad \hat{\pi}_p \colon R[x] \to \frac{R}{pR}[x]$$

is the homomorphism between polynomial rings induced by the quotient map $\pi_p \colon R \to R/pR$. Since $\hat{\pi}_p$ is a homomorphism,

$$\hat{\pi}_p(f(x)g(x)) = \hat{\pi}_p(f(x))\hat{\pi}_p(g(x)) = 0.$$

By Lemma 16.6, since p is irreducible then pR is a prime ideal. Thus, by Theorem 4.47, R/pR and $\frac{R}{pR}[x]$ are integral domains. So either

 $\hat{\pi}_p(f(x)) = 0$ or $\hat{\pi}_p(g(x)) = 0.$

Thus, by Lemma 2.13,

either f(x) is not primitive or g(x) is not primitive.