2.10 Proof of existence and uniqueness of primitive representatives

Proposition 2.11. Let R be a UFD. Let \mathbb{F} be the field of fractions of R and let $f(x) \in \mathbb{F}[x]$. Then

(a) There exists an element $c \in \mathbb{F}$ and a primitive polynomial $g(x) \in R[x]$ such that

$$f(x) = cg(x).$$

(b) The factors c and g(x) are unique up to multiplication by a unit in R, i.e. If

$$f(x) = CG(x)$$

with $C \in \mathbb{F}$ and $G(x) \in R[x]$ primitve then

there exists $u \in \mathbb{R}^{\times}$ such that $C = u^{-1}c$ and G(x) = ug(x).

(c) f(x) is irreducible in $\mathbb{F}[x]$ if and only if g(x) is irreducible in $\mathbb{R}[x]$.

Proof.

(a) Let

$$f(x) = \frac{a_0}{b_0} + \frac{a_1}{b_1}x + \dots + \frac{a_k}{b_k}x^k \in \mathbb{F}[x]$$

Making a common denominator,

$$f(x) = \frac{1}{b_0 b_1 \cdots b_k} (c_0 + c_1 x + \cdots + c_k x^k), \quad \text{where } c_i = a_i b_1 \cdots \hat{b}_i \cdots b_k$$

(the b_i denotes omission of the factor b_i in the product).

Let $d = \gcd(c_0, c_1, \dots, c_k)$. Letting $c = \frac{d}{b_0 b_1 \cdots b_k} \in \mathbb{F}$ and $g(x) = c'_0 + c'_1 x + \dots + c'_k x^k \in R[x]$ where $c'_i = \frac{c_i}{d}$ then $f(x) = \frac{d}{b_0 \cdots b_k} (c'_0 + c'_1 x + \dots + c'_k x^k) = cg(x)$

Since d divides c_i then $c'_i \in R$.

Since $gcd(c'_0, c'_1, \ldots, c'_k) = 1$ then $c'_0 + c'_1 x + \cdots + c'_k x^k = g(x)$ is primitive.

(b) Suppose f(x) = cg(x) and f(x) = CG(x) where $c, C \in \mathbb{F}$ and $g(x), G(x) \in R[x]$ are primitive polynomials.

Let

$$g(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k, \quad \text{and} \quad c = \frac{a}{b} \quad \text{and} \quad C = \frac{A}{B},$$

with $a_0, \ldots, a_k, b_0, \ldots, b_k, a, b, A, B \in R$. Since $f(x) = \frac{a}{b}g(x) = \frac{A}{B}G(x)$ then aBg(x) = bAG(x). So $aBa_0 = bAb_0, aBa_1 = bAb_1, \ldots, aBa_k = bAb_k$. Since g(x) is primitive then $gcd(aBa_0, aBa_1, \ldots, aBa_k) = aB$. Since G(x) is primitive then $gcd(bAb_0, bAb_1, \ldots, bAb_k) = bA$. Thus, by Proposition 16.8,

there exists $u \in R^{\times}$ such that aB = ubA.

So c = uC and CG(x) = cg(x) = uCg(x) = C(ug(x)). By the cancellation law, Proposition 4.46, G(x) = ug(x). So c and g(x) are unique up to multiplication by a unit.

(c) \implies : Proof by contrapositive.

Assume g(x) is not irreducible in R[x]. To show: f(x) is not irreducible in $\mathbb{F}[x]$. Then there exist $g_1(x)$ and $g_2(x)$ in R[x] such that $g(x) = g_1(x)g_2(x)$. So $f(x) = cg(x) = cg_1(x)g_2(x)$. Since $R[x] \subseteq \mathbb{F}[x]$ then $g_1(x), g_2(x) \in \mathbb{F}[x]$. So f(x) is not irreducible in $\mathbb{F}[x]$.

(c) \Leftarrow : Proof by contrapositive.

Assume f(x) is not irreducible in $\mathbb{F}[x]$. To show: g(x) is not irreducible in R[x]. Then there are $f_1(x)$ and $f_2(x)$ in $\mathbb{F}[x]$ such that $f(x) = f_1(x)f_2(x)$. So, by (a), there exist $c_1, c_2 \in \mathbb{F}$ and primitive polynomials $g_1(x), g_2(x) \in R[x]$ such that

$$f_1(x) = c_1 g_1(x)$$
 and $f_2(x) = c_2 g_2(x)$.

Let $c = c_1 c_2$.

Then $f(x) = (c_1c_2)g_1(x)g_2(x)$.

By Gauss' lemma, Lemma 2.14, $g_1(x)g_2(x)$ is a primitive polynomial in R[x]. So, by part (b), there exists $u \in R^{\times}$ such that $g(x) = ug_1(x)g_2(x)$. So g(x) is not irreducible in R[x].