2.10 Proof of existence and uniqueness of primitive representatives

Proposition 2.11. Let R be a UFD. Let \mathbb{F} be the field of fractions of R and let $f(x) \in \mathbb{F}[x]$. Then
(a) There exists an element $c \in \mathbb{F}$ and a primitive polynomial $g(x) \in R[x]$ such that

$$
f(x)=c g(x)
$$

(b) The factors c and $g(x)$ are unique up to multiplication by a unit in R, i.e. If

$$
f(x)=C G(x)
$$

with $C \in \mathbb{F}$ and $G(x) \in R[x]$ primitve then

$$
\text { there exists } u \in R^{\times} \text {such that } \quad C=u^{-1} c \quad \text { and } \quad G(x)=u g(x) \text {. }
$$

(c) $f(x)$ is irreducible in $\mathbb{F}[x]$ if and only if $g(x)$ is irreducible in $R[x]$.

Proof.

(a) Let

$$
f(x)=\frac{a_{0}}{b_{0}}+\frac{a_{1}}{b_{1}} x+\cdots+\frac{a_{k}}{b_{k}} x^{k} \in \mathbb{F}[x] .
$$

Making a common denominator,

$$
f(x)=\frac{1}{b_{0} b_{1} \cdots b_{k}}\left(c_{0}+c_{1} x+\cdots+c_{k} x^{k}\right), \quad \text { where } c_{i}=a_{i} b_{1} \cdots \hat{b}_{i} \cdots b_{k}
$$

(the \hat{b}_{i} denotes omission of the factor b_{i} in the product).
Let $d=\operatorname{gcd}\left(c_{0}, c_{1}, \ldots, c_{k}\right)$.
Letting $c=\frac{d}{b_{0} b_{1} \cdots b_{k}} \in \mathbb{F}$ and $g(x)=c_{0}^{\prime}+c_{1}^{\prime} x+\cdots+c_{k}^{\prime} x^{k} \in R[x]$ where $c_{i}^{\prime}=\frac{c_{i}}{d}$ then

$$
f(x)=\frac{d}{b_{0} \cdots b_{k}}\left(c_{0}^{\prime}+c_{1}^{\prime} x+\cdots+c_{k}^{\prime} x^{k}\right)=c g(x)
$$

Since d divides c_{i} then $c_{i}^{\prime} \in R$.
Since $\operatorname{gcd}\left(c_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{k}^{\prime}\right)=1$ then $c_{0}^{\prime}+c_{1}^{\prime} x+\cdots+c_{k}^{\prime} x^{k}=g(x)$ is primitive.
(b) Suppose $f(x)=c g(x)$ and $f(x)=C G(x)$ where $c, C \in \mathbb{F}$ and $g(x), G(x) \in R[x]$ are primitive polynomials.
Let

$$
\begin{aligned}
& g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}, \\
& G(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{k} x^{k}
\end{aligned} \quad \text { and } \quad c=\frac{a}{b} \quad \text { and } \quad C=\frac{A}{B},
$$

with $a_{0}, \ldots, a_{k}, b_{0}, \ldots, b_{k}, a, b, A, B \in R$.
Since $f(x)=\frac{a}{b} g(x)=\frac{A}{B} G(x)$ then $a B g(x)=b A G(x)$.
So $a B a_{0}=b A b_{0}, a B a_{1}=b A b_{1}, \ldots, a B a_{k}=b A b_{k}$.
Since $g(x)$ is primitive then $\operatorname{gcd}\left(a B a_{0}, a B a_{1}, \ldots, a B a_{k}\right)=a B$.
Since $G(x)$ is primitive then $\operatorname{gcd}\left(b A b_{0}, b A b_{1}, \ldots, b A b_{k}\right)=b A$.
Thus, by Proposition 16.8 ,
there exists $u \in R^{\times}$such that $\quad a B=u b A$.

So $c=u C$ and $C G(x)=c g(x)=u C g(x)=C(u g(x))$.
By the cancellation law, Proposition 4.46, $G(x)=u g(x)$.
So c and $g(x)$ are unique up to multiplication by a unit.
(c) \Longrightarrow : Proof by contrapositive.

Assume $g(x)$ is not irreducible in $R[x]$. To show: $f(x)$ is not irreducible in $\mathbb{F}[x]$.
Then there exist $g_{1}(x)$ and $g_{2}(x)$ in $R[x]$ such that $g(x)=g_{1}(x) g_{2}(x)$.
So $f(x)=c g(x)=c g_{1}(x) g_{2}(x)$.
Since $R[x] \subseteq \mathbb{F}[x]$ then $g_{1}(x), g_{2}(x) \in \mathbb{F}[x]$.
So $f(x)$ is not irreducible in $\mathbb{F}[x]$.
(c) \Longleftarrow : Proof by contrapositive.

Assume $f(x)$ is not irreducible in $\mathbb{F}[x]$. To show: $g(x)$ is not irreducible in $R[x]$.
Then there are $f_{1}(x)$ and $f_{2}(x)$ in $\mathbb{F}[x]$ such that $f(x)=f_{1}(x) f_{2}(x)$.
So, by (a), there exist $c_{1}, c_{2} \in \mathbb{F}$ and primitive polynomials $g_{1}(x), g_{2}(x) \in R[x]$ such that

$$
f_{1}(x)=c_{1} g_{1}(x) \quad \text { and } \quad f_{2}(x)=c_{2} g_{2}(x) .
$$

Let $c=c_{1} c_{2}$.
Then $f(x)=\left(c_{1} c_{2}\right) g_{1}(x) g_{2}(x)$.
By Gauss' lemma, Lemma 2.14 $g_{1}(x) g_{2}(x)$ is a primitive polynomial in $R[x]$.
So, by part (b), there exists $u \in R^{\times}$such that $g(x)=u g_{1}(x) g_{2}(x)$.
So $g(x)$ is not irreducible in $R[x]$.

