16.1 Problem Sheet: Navigation

- 1. Why should the symbols \subset , \forall , \exists be banned? What should they be replaced by?
- 2. Why should the phrase "Let a > 7" be banned? What should it be replaced by?
- 3. What does the symbol \mapsto mean and how should it be used?
- 4. What comes at the end of a sentence? and at the end of an equation that ends a sentence?
- 5. Why should the phrases 'for all', 'for every', 'for each', and 'for some' be banned? What should they be replaced by?
- 6. Why is it bad style to start a sentence with a mathematical symbol? What should be written instead?
- 7. Why do we never use a comma in place of the word 'then' in mathematical writing?
- 8. What are the symbols for "subset of", "proper subset of"? "element of" and "equal"?
- 9. What is the form of a mathematical definition (for a noun)?
- 10. What is the form of a mathematical definition (for an adjective)?
- 11. What is the definition of equal sets?
- 12. What is the definition of equal functions?
- 13. What is the definition of a function?
- 14. What is Proof type I? How does proof type I proceed?
- 15. What is proof type II? How does proof type II proceed?
- 16. What is proof type III? How does proof type III proceed?
- 17. What is proof by contrapositive? How does a proof by contrapositive proceed?
- 18. How do proofs of uniqueness proceed?
- 19. What is the underlying source of proof by induction? How does proof by induction proceed?
- 20. Why should proof by contradiction be banned? What should it be replaced by?
- 21. What is the structure of a universal property? What property 'in English' is a universal property capturing? Give an explicit example of something that is defined by a universal property and state the definition carefully and completely.
- 22. What property is "there exists" capturing? What property is "there exists a unique" capturing?
- 23. Prove that if $x^2 < y^2$ then x < y. (Correct the statement as necessary before proving it.)
- 24. Prove that if a^2 is divisible by 2 then a^2 is divisible by 4. (Correct the statement as necessary before proving it.)
- 25. Prove that a function is invertible if and only if it is bijective. (Correct the statement as necessary before proving it.)

- 26. When is it appropriate to use the symbols \implies , \iff , \longrightarrow and when is it not? When they should not be used, what should they be replaced by?
- 27. Carefully define a field.
- 28. Carefully define a vector space.
- 29. Carefully define $\operatorname{span}(S)$.
- 30. Carefully define linearly independent.
- 31. Carefully define basis.
- 32. Carefully define \mathbb{Q} and prove that it is a field.
- 33. Carefully define \mathbb{C} and prove that it is a field.
- 34. Let $m \in \mathbb{Z}_{>0}$. Carefully define $\mathbb{Z}/m\mathbb{Z}$.
- 35. Let $p \in \mathbb{Z}_{>0}$. Show that $\mathbb{Z}/p\mathbb{Z}$ is a field if and only if p is prime.
- 36. Show that $3 \cdot 6 = 1 \cdot 6$ in $\mathbb{Z}/12\mathbb{Z}$.
- 37. Let $m \in \mathbb{Z}_{>1}$. Show that if m is not prime then there exist $a, b, c \in \mathbb{Z}/m\mathbb{Z}$ such that ac = bc and $c \neq 0$ and $a \neq b$.
- 38. Let \mathbb{F} be a field. Show that if $a, b, c \in \mathbb{F}$ and ac = bc and $c \neq 0$ then a = b.
- 39. Show that if $a, b, c \in \mathbb{Z}$ and ac = bc and $c \neq 0$ then a = b.
- 40. Carefully define $\mathbb{R}[x]$ and determine which of the axioms of a field it satisfies and which axioms of a field it does not satisfy.
- 41. Show that if $a, b, c \in \mathbb{R}[x]$ and ac = bc and $c \neq 0$ then a = b.
- 42. Show that the \mathbb{R} -subspace of \mathbb{C} with \mathbb{R} -basis $\{1, i\}$ is a field.
- 43. Show that the Q-subspace of \mathbb{C} with Q-basis $\{1, i\}$ is a field.
- 44. Let $2^{1/3} \in \mathbb{R}_{>0}$. Show that the Q-subspace of C with Q-basis $\{1, 2^{1/3}, 2^{2/3}\}$ is a field.
- 45. Let $\zeta = e^{2\pi i/3}$. Show that $\zeta^2 = -1 \zeta$ and that the Q-subspace of C with Q-basis $\{1, \zeta, \}$ is a field.
- 46. Let $\zeta = e^{2\pi i/3}$. Show that $\zeta^2 = -1 \zeta$ and that the \mathbb{R} -subspace of \mathbb{C} with \mathbb{R} -basis $\{1, \zeta\}$ is a field.
- 47. Let $2^{1/3} \in \mathbb{R}_{\geq 0}$ and $\zeta = e^{2\pi i/3}$. Show that the \mathbb{Q} -subspace of \mathbb{C} with \mathbb{Q} -basis $\{1, \zeta, 2^{1/3}, 2^{1/3}\zeta, 2^{2/3}, 2^{2/3}\zeta\}$ is a field.
- 48. Let $2^{1/3} \in \mathbb{R}_{\geq 0}$ and $\zeta = e^{2\pi i/3}$. Find a \mathbb{Q} -basis of the smallest field contained in \mathbb{C} that contains \mathbb{Q} and $2^{\frac{1}{3}}\zeta$.
- 49. Carefully define the following
 - (a) group
 - (b) abeliangroup

- (c) ring
- (d) \mathbb{Z} -algebra
- (d) \mathbb{F} -algebra
- (d) R-algebra
- (e) commutativering
- (f) field
- 50. Carefully define the following
 - (a) G-set
 - (b) \mathbb{Z} -module
 - (c) *R*-module
 - (d) \mathbb{F} -module
 - (e) **F**-vector space
- 51. Carefully define the following
 - (a) subgroup
 - (b) subabelian group
 - (c) subring
 - (d) \mathbb{Z} -subalgebra
 - (d) $\mathbb F\text{-subalgebra}$
 - (d) R-subalgebra
 - (e) subcommutativering
 - (f) subfield
- 52. Carefully define the following
 - (a) sub G-set
 - (b) Z-submodule
 - (c) *R*-submodule
 - (d) F-submodule
 - (e) \mathbb{F} -subspace
- 53. Carefully define the following
 - (a) group morphism
 - (b) abeliangroup morphism
 - (c) ring morphism
 - (d) \mathbb{Z} -algebra morphism
 - (d) **F**-algebra morphism
 - (d) *R*-algebra morphism
 - (e) commutativering morphism
 - (f) field morphism
- 54. Carefully define the following
 - (a) G-set morphism
 - (b) \mathbb{Z} -module morphism
 - (c) *R*-module morphism
 - (d) \mathbb{F} -module morphism
 - (e) \mathbb{F} -linear transformation
- 55. Carefully define the following

- (a) group isomorphism
- (b) abeliangroup isomorphism
- (c) ring isomorphism
- (d) \mathbb{Z} -algebra isomorphism
- (d) F-algebra isomorphism
- (d) R-algebra isomorphism
- (e) commutativering isomorphism
- (f) field isomorphism
- 56. Carefully define the following
 - (a) G-set isomorphism
 - (b) \mathbb{Z} -module isomorphism
 - (c) *R*-module isomorphism
 - (d) **F**-module isomorphism
 - (e) \mathbb{F} -vector space isomorphism
- 57. Carefully define the following
 - (a) group automorphism
 - (b) abeliangroup automorphism
 - (c) ring automorphism
 - (d) \mathbb{Z} -algebra automorphism
 - (d) **F**-algebra automorphism
 - (d) *R*-algebra automorphism
 - (e) commutativering automorphism
 - (f) field automorphism
- 58. Carefully define the following
 - (a) G-set automorphism
 - (b) Z-module automorphism
 - (c) *R*-module automorphism
 - (d) F-module automorphism
 - (e) \mathbb{F} -vector space automorphism
- 59. Carefully define the following
 - (a) kernel and image of a group morphism
 - (b) kernel and image of an abeliangroup morphism
 - (c) kernel and image of a ring morphism
 - (d) kernel and image of a Z-algebra morphism
 - (d) kernel and image of a F-algebra morphism
 - (d) kernel and image of a R-algebra morphism
 - (e) kernel and image of a commutativering morphism
 - (f) kernel and image of a field morphism
- 60. (a) Let G be a group and let K be a subgroup of G. Show that

K is a normal subgroup of G if and only if there exists a group morphism $\varphi: G \to H$ such that ker $\varphi = K$.

(b) Let R be a ring and let I be a subabelian group of R. Show that

I is an ideal of *R* if and only if there exists a ring morphism $\varphi \colon R \to S$ such that ker $\varphi = I$.

(b) Let A be an R-algebra and let B be an R-submodule of A. Show that

 $B \text{ is an ideal of } A \qquad \text{if and only if} \qquad \begin{array}{l} \text{there exists an } R\text{-algebra morphism} \\ \varphi \colon A \to C \text{ such that } \ker(\varphi) = B. \end{array}$

(c) Let M be an R-module and let N be an R-submodule of M. Show that

N is an R-submodule of M if and only if there exists an R-module morphism $\varphi \colon M \to P$ such that $\ker(\varphi) = N$.

(d) Let V be an \mathbb{F} -vector space and let W be an \mathbb{F} -subspace of V. Show that

W is an \mathbb{F} -subspace of V if and only if

there exists an \mathbb{F} -linear transformation $\varphi: V \to P$ such that $\ker(\varphi) = W$.

61. (a) Let $\varphi \colon G \to H$ be a group morphism. Show that

$$\frac{G}{\ker(\varphi)} \cong \operatorname{im}(\varphi) \qquad \text{as groups.}$$

(b) Let $\varphi \colon R \to S$ be a ring morphism. Show that

$$\frac{R}{\ker(\varphi)} \cong \operatorname{im}(\varphi) \qquad \text{as rings.}$$

(c) Let $\varphi \colon A \to B$ be an *R*-algebra morphism. Show that

$$\frac{A}{\ker(\varphi)} \cong \operatorname{im}(\varphi) \qquad \text{as } R\text{-algebras.}$$

(d) Let $\varphi \colon M \to N$ be an *R*-module morphism. Show that

$$\frac{M}{\ker(\varphi)} \cong \operatorname{im}(\varphi) \qquad \text{as } R\text{-modules.}$$

(e) Let $\varphi \colon V \to V$ be an \mathbb{F} -linear transformation. Show that

$$\frac{V}{\ker(\varphi)} \cong \operatorname{im}(\varphi) \qquad \text{as \mathbb{F}-vector spaces.}$$

- 62. (a) Let $\varphi \colon G \to H$ be a group morphism. Show that ker φ is a normal subgroup of G.
 - (b) Give an example of a group morphism $\varphi \colon G \to H$ such that $\operatorname{im}(\varphi)$ is a subgroup of H.
 - (c) Give an example of a group morphism $\varphi \colon G \to H$ such that $\operatorname{im}(\varphi)$ is not a subgroup of H.
 - (d) Let $\varphi \colon G \to H$ be a ring morphism. Explain how to use φ to make H into a G-set and show that $\operatorname{im}(\varphi)$ is an G-subset of H.
- 63. (a) Let $\varphi \colon R \to S$ be a ring morphism. Show that ker φ is an ideal of R.
 - (b) Give an example of a ring morphism $\varphi \colon R \to S$ such that $\operatorname{im}(\varphi)$ is an S-submodule of S.
 - (c) Give an example of a ring morphism $\varphi \colon R \to S$ such that $\operatorname{im}(\varphi)$ is not an S-submodule S.
 - (d) Let $\varphi \colon R \to S$ be a ring morphism. Explain how to use φ to make S into an R-module and show that $\operatorname{im}(\varphi)$ is an R-submodule of S.

64. Let R be a ring.

- (a) Let $\varphi \colon A \to B$ be an *R*-algebra morphism. Show that ker φ is an ideal of *A*.
- (b) Give an example of an R-algebra morphism $\varphi \colon A \to B$ such that $im(\varphi)$ is a B-submodule of B.
- (c) Give an example of a R-algebra morphism $\varphi \colon A \to B$ such that $\operatorname{im}(\varphi)$ is not an B-submodule B.
- (d) Let $\varphi \colon A \to B$ be an *R*-algebra morphism. Explain how to use φ to make *B* into an *A*-module and show that $\operatorname{im}(\varphi)$ is an *A*-submodule of *B*.
- 65. Let \mathbb{F} be a field. Show that an \mathbb{F} -vector space is the same thing as an \mathbb{F} -module.
- 66. Show that a ring is the same thing as a \mathbb{Z} -algebra.
- 67. Show that an abeliangroup is the same thing as a \mathbb{Z} -module.
- 68. Let R be a ring. Explain how R is an R-module. Show that an ideal of R is the same thing as an R-submodule of R.
- 69. Let A be an R-algebra. Explain how A is an A-module. Show that an ideal of A is the same thing as an A-submodule of A.
- 70. (a) Let G be a group. Show that a subgroup of G is the same as an injective group morphism $\varphi: H \to G$.
 - (b) Let R be a ring. Show that a subring of R is the same as an injective ring morphism $\varphi: S \to R$.
 - (c) Let A be an R-algebra. Show that an R-subalgebra A is the same as an injective R-algebra morphism $\varphi: C \to A$.
 - (d) Let \mathbb{K} be a field. Show that a subfield of \mathbb{K} is the same as an injective field morphism $\varphi \colon \mathbb{F} \to \mathbb{K}$.
 - (e) Let R be a ring and let M be an R-module. Show that an R-submodule of M is the same as an injective R-module morphism $\varphi \colon N \to M$.
 - (f) Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space. Show that an \mathbb{F} -subspace of V is the same as an injective \mathbb{F} -linear transformation $\varphi \colon W \to V$.
- 71. Show that the symmetric group S_n is presented by generators s_1, \ldots, s_{n-1} and relations

$$s_j^2 = 1,$$
 $s_k s_\ell = s_\ell s_k,$ $s_i, s_{i+1} s_i = s_{i+1} s_i s_{i+1},$

for $j \in \{1, \dots, n-1\}$, $j, k \in \{1, \dots, n-1 \text{ with } k \notin \{k+1, k-1\} \text{ and } i \in \{1, \dots, n-2\}$.

72. Show that the dihedral group D_n is presented by generators s, r with relations

$$s^2 = 1, \qquad r^n = 1, \qquad sr = r^{-1}s.$$

- 73. Show that the cyclic group μ_n is presented by a single generator ζ with relation $\zeta^n = 1$.
- 74. Show that the cyclic group $\mathbb{Z}/n\mathbb{Z}$ is presented by a single generator 1 with relation n = 0.
- 75. Show that the dihedral group D_n is presented by generators s_1, s_2 with

$$s_1^2 = 1, \qquad s_2^2 = 1, \qquad (s_1 s_2)^n = 1.$$

76. Carefully define permutation matrix. Show that the symmetric group S_n is (isomorphic to) the group of $n \times n$ permutation matrices.

- 77. Carefully define cyclic matrix. Show that the cyclic group μ_n is (isomorphic to) the group of $n \times n$ cyclic matrices.
- 78. Carefully define dihedral matrices. Show that the dihedral group D_n is (isomorphic to) the group of $n \times n$ dihedral matrices.
- 79. Show that the symmetric group S_n is (isomorphic to) Aut($\{1, \ldots, n\}$).
- 80. Determine the subgroup lattice of $\mathbb{Z}/2\mathbb{Z}$.
- 81. Determine the subgroup lattice of $\mathbb{Z}/3\mathbb{Z}$.
- 82. Determine the subgroup lattice of $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 83. Determine the subgroup lattice of $\mathbb{Z}/5\mathbb{Z}$.
- 84. Show that $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.
- 85. Determine the subgroup lattice of $\mathbb{Z}/6\mathbb{Z}$.
- 86. Show that $S_3 \cong D_3$.
- 87. Carefully define the quaternion group and determine its subgroup lattice.
- 88. Show that \mathbb{C} is the \mathbb{R} -algebra presented by a single generator *i* and the relation $i^2 = 1$.
- 89. Show that $\mathbb{R}[x]$ is the \mathbb{R} -algebra presented by a single generator x (and no relations).
- 90. Show that \mathbb{Z} is the group generated by single generator 1 (and no relations).
- 91. Show that $\mathbb{R}[x, x^{-1}]$ is the \mathbb{R} -algebra presented by a generators x, y with relation xy = 1.
- 92. Show that \mathbb{F}_4 is the \mathbb{F}_2 -algebra presented by a single generator τ with relation $\tau^2 + \tau + 1 = 0$.
- 93. Let I be an ideal of \mathbb{Z} . Let $m \in \mathbb{Z}_{>0}$ be minimal such that $m \in I$. Show that $m\mathbb{Z} = I$.
- 94. Show that if I is an ideal of \mathbb{Z} then there exists $m \in \mathbb{Z}_{>0}$ such that $m\mathbb{Z} = I$.
- 95. Show that $\mathbb{Z}_{>0}$ indexes the ideals of \mathbb{Z} .
- 96. Show that $p \in \mathbb{Z}_{>0}$ is prime if and only if there does not exist $c \in \mathbb{Z}_{>1}$ such that $p\mathbb{Z} \subsetneq c\mathbb{Z} \subsetneq \mathbb{Z}$.
- 97. Let $m, n \in \mathbb{Z}_{>0}$. Show that n is divisible by m if and only if $n\mathbb{Z} \subseteq m\mathbb{Z}$.
- 98. Show that $p \in \mathbb{Z}_{>0}$ is prime if and only if $\mathbb{Z}/p\mathbb{Z}$ is a simple \mathbb{Z} -module.
- 99. Let $m, n, \ell \in \mathbb{Z}_{>0}$ and assume that $m\ell = n$. Show that ℓ is prime if and only if $m\mathbb{Z}/n\mathbb{Z}$ is a simple \mathbb{Z} -module.
- 100. Let $n \in \mathbb{Z}_{>1}$. Show that there does not exist an infinite sequence $n > m_1 > m_2 > \cdots > 1$ such that $n\mathbb{Z} \subsetneq m_1\mathbb{Z} \subsetneq m_2\mathbb{Z} \subsetneq \cdots \subsetneq \mathbb{Z}$.
- 101. Show that if M is a \mathbb{Z} -module and $N \subseteq M$ is a \mathbb{Z} -submodule of M and M/N is not simple then there exists a \mathbb{Z} -module M' such that $N \subsetneq M' \subsetneq M$.

102. Assume that $k \in \mathbb{Z}_{>0}$ and $p_1, \ldots, p_k \in \mathbb{Z}_{>0}$ are prime. Let

 $n = p_1 \cdots p_k, \quad m_1 = p_2 \cdots p_k, \quad \dots, \quad m_{k-1} = p_k.$

Show that $n\mathbb{Z} \subseteq m_1\mathbb{Z} \subseteq \cdots \subseteq m_{k-1}\mathbb{Z} \subseteq \mathbb{Z}$ and that Let $m_0 = n$ and $m_k = 1$. Show that if $j \in \{1, \ldots, k\}$ then $m_j\mathbb{Z}/m_{j-1}\mathbb{Z}$ is a simple \mathbb{Z} -module.

- 103. Let $n \in \mathbb{Z}_{>0}$. Show that there exist $k \in \mathbb{Z}_{>0}$ and primes $p_1, \ldots, p_k \in \mathbb{Z}_{>0}$ such that $n = p_1 \cdots p_k$.
- 104. (Eisenstein criterion) Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}_{>0}$ be a prime integer. Assume that

(a) p does not divide a_n ,

- (b) p divides each of $a_{n-1}, a_{n-2}, \ldots, a_0$,
- (c) p^2 does not divide a_0 .

Show that f(x) is irreducible in $\mathbb{Q}[x]$.

105. Let $f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ and let p be a prime integer such that p does not divide a_n . Let $\pi_p: \qquad \mathbb{Z}[x] \longrightarrow \qquad \mathbb{Z}/p\mathbb{Z}[x]$ where \bar{z} denotes a mod \bar{x}

Show that if $\pi_p(f(x))$ is irreducible in $\mathbb{Z}/p\mathbb{Z}[x]$ then f(x) is irreducible in $\mathbb{Q}[x]$.

- 106. Show that if $f(x) \in \mathbb{Z}[x]$, deg (f(x)) > 0, and f(x) is irreducible in $\mathbb{Z}[x]$ then f(x) is irreducible in $\mathbb{Q}[x]$.
- 107. Let $f(x) \in \mathbb{Z}[x]$. Show that f(x) is irreducible in $\mathbb{Z}[x]$ if and only if

either $f(x) = \pm p$, where p is a prime integer, or f(x) is a primitive polynomial and f(x) is irreducible in $\mathbb{Q}[x]$.

- 108. Carefully define field, field morphism, subfield, field automorphism, and field extension.
- 109. Show that \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields.
- 110. Show that $\mathbb{C}(x)$ and $\mathbb{C}((x))$ are fields.
- 111. Show that \mathbb{Z} and $\mathbb{C}[x]$ and $\mathbb{C}[x, x^{-1}]$ and $\mathbb{C}[[x]]$ are not fields.
- 112. Let \mathbb{E}/\mathbb{F} be a field extension. Show that \mathbb{E} is an \mathbb{F} -vector space.
- 113. Give an example of fields $\mathbb{F} \subseteq \mathbb{E}$ such that $\dim_{\mathbb{F}}(\mathbb{E})$ finite.
- 114. Give an example of fields $\mathbb{F} \subseteq \mathbb{E}$ such that $\dim_{\mathbb{F}}(\mathbb{E})$ is infinite.
- 115. Show that if $\varphi \colon \mathbb{E} \to \mathbb{F}$ is a field morphism then φ is injective.
- 116. Give an example of a field morphism $\varphi \colon \mathbb{F} \to \mathbb{F}$ that is not surjective.
- 117. Carefully define \mathbb{F} -module and \mathbb{F} -algebra.
- 118. Let \mathbb{E}/\mathbb{F} be a field extension. Show that \mathbb{E} is an \mathbb{F} -algebra.

- 119. Let $\mathbb{E} \supseteq \mathbb{K} \supseteq \mathbb{F}$ be inclusions of fields. Show that $[\mathbb{E} : \mathbb{K}][\mathbb{K} : \mathbb{F}] = [\mathbb{E} : \mathbb{F}]$.
- 120. Let \mathbb{F} be a field. Show that $\operatorname{Aut}(\mathbb{F})$ is a group.
- 121. Let \mathbb{F} be a finite field of characteristic 2. Show that the map

 $\begin{array}{ccc} \mathbb{F} & \to & \mathbb{F} \\ x & \mapsto & x^2 \end{array} \quad \text{is a bijection.}$

122. Let \mathbb{F} be a field of characteristic 2. Show that the map

$$\begin{array}{ccc} \mathbb{F} & \to & \mathbb{F} \\ x & \mapsto & x^2 \end{array} \quad \text{is a bijection.}$$

- 123. Give an example of a field of characteristic p such that the Frobenius map is not an automorphism.
- 124. Determine $\operatorname{Aut}(\mathbb{Q})$, $\operatorname{Aut}(\mathbb{R})$ and $\operatorname{Aut}(\mathbb{C})$ and $\operatorname{Aut}(\mathbb{C}/\mathbb{R})$ and $\operatorname{Aut}(\mathbb{C}/\mathbb{Q})$.
- 125. Carefully define $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ and $\operatorname{Fix}(H)$.
- 126. Show that if $\mathbb{F} \subseteq \mathbb{E}$ is an inclusion of fields then $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ is a subgroup of $\operatorname{Aut}(\mathbb{E})$.
- 127. Show that if $\mathbb{F} \subseteq \mathbb{E}$ is an inclusion of fields and $\dim_{\mathbb{F}}(\mathbb{E})$ is finite then $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ is a finite subgroup of $\operatorname{Aut}(\mathbb{E})$.
- 128. Show that if H is a subgroup of $Aut(\mathbb{E})$ then Fix(H) is a subfield of \mathbb{E} .
- 129. Show that if H is a finite subgroup of $\operatorname{Aut}(\mathbb{E})$ then $\mathbb{F} = \operatorname{Fix}(H)$ is a subfield of \mathbb{E} and $\dim_{\mathbb{F}}(\mathbb{E})$ is finite.
- 130. Show that if \mathbb{F} is a subfield of \mathbb{E} then $\operatorname{Fix}(\operatorname{Gal}(\mathbb{E}/\mathbb{F})) \supseteq \mathbb{F}$.
- 131. Show that if H is a subgroup of $\operatorname{Aut}(\mathbb{E})$ then $\operatorname{Gal}(\mathbb{E}/\operatorname{Fix}(H)) \supseteq H$,
- 132. Show that if $\mathbb{K} \subseteq \mathbb{F} \subseteq \mathbb{E}$ are inclusions of fields then $\operatorname{Gal}(\mathbb{E}/\mathbb{K}) \supseteq \operatorname{Gal}(\mathbb{E}/\mathbb{F})$,
- 133. Show that if $H \subseteq G \subseteq \operatorname{Aut}(\mathbb{E})$ are inclusions of groups then $\operatorname{Fix}(H) \supseteq \operatorname{Fix}(G)$.
- 134. Show that if \mathbb{E} is a field and H is a subgroup of Aut(\mathbb{E}) then Fix(Gal(\mathbb{E} /Fix(H))) = Fix(H).
- 135. Show that if $\mathbb{F} \subseteq \mathbb{E}$ is an inclusion of fields then $\operatorname{Gal}(\mathbb{E}/\operatorname{Fix}(\operatorname{Gal}(\mathbb{E}/\mathbb{F}))) = \operatorname{Gal}(\mathbb{E}/\mathbb{F})$.
- 136. Show that if $\sigma \in \operatorname{Aut}(\mathbb{E})$ and $\mathbb{F} \subseteq \mathbb{E}$ is an inclusion of fields then $\sigma \mathbb{F}$ is a subfield of \mathbb{E} .
- 137. Show that if $\sigma \in \operatorname{Aut}(\mathbb{E})$ and $\mathbb{F} \subseteq \mathbb{E}$ is an inclusion of fields then $\operatorname{Gal}(\sigma \mathbb{F}) = \sigma \operatorname{Gal}(\mathbb{F})\sigma^{-1}$.
- 138. Show that if $\sigma \in \operatorname{Aut}(\mathbb{E})$ and H is a subgroup of $\operatorname{Aut}(\mathbb{E})$ then $\operatorname{Fix}(\sigma H \sigma^{-1}) = \sigma \operatorname{Fix}(H)$.
- 139. Show that if H is a finite subgroup of $\operatorname{Aut}(\mathbb{E})$ then $[\mathbb{E}: \operatorname{Fix}(H)] = |H|$.
- 140. Show that if H is a finite subgroup of $\operatorname{Aut}(\mathbb{E})$ then $[\operatorname{Gal}(\operatorname{Fix}(H)) = H$.
- 141. Draw the subgroup lattice of S_2 and determine which subgroups are normal.
- 142. Draw the subgroup lattice of $\mathbb{Z}/3\mathbb{Z}$ and determine which subgroups are normal.

- 143. Draw the subgroup lattice of $\mathbb{Z}/4\mathbb{Z}$ and determine which subgroups are normal.
- 144. Draw the subgroup lattice of $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and determine which subgroups are normal.
- 145. Draw the subgroup lattice of $\mathbb{Z}/5\mathbb{Z}$ and determine which subgroups are normal.
- 146. Draw the subgroup lattice of S_3 and determine which subgroups are normal.
- 147. Carefully define $\mathbb{F}(\alpha)$ and $\mathbb{F}[\alpha]$.
- 148. Define $\mathbb{F}[x]$ and $ev_{\alpha} \colon \mathbb{F}[x] \to \mathbb{F}$ and show that ev_{α} is a ring homomorphism.
- 149. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that there exists a unique monic polynomial $m(x) \in \mathbb{F}[x]$ such that $\ker(\operatorname{ev}_{\alpha}) = m(x)\mathbb{F}[x]$.
- 150. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Let $m_{\alpha,\mathbb{F}}(x) \in \mathbb{F}[x]$ be the minimal poylnomial of α over \mathbb{F} . Show that $m_{\alpha,\mathbb{F}}(x) \in \mathbb{F}[x]$ is irreducible.
- 151. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that if α is algebraic over \mathbb{F} then $\mathbb{F}(\alpha) = \mathbb{F}[\alpha]$.
- 152. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that if $n \in \mathbb{Z}_{>0}$ and $\deg(m_{\alpha,\mathbb{F}}(x)) = n$ then $[\mathbb{F}(\alpha) : \mathbb{F}] = n$.
- 153. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that if $n \in \mathbb{Z}_{>0}$ and deg $(m_{\alpha,\mathbb{F}}(x)) = n$ then the \mathbb{F} -vector space $\mathbb{F}(\alpha)$ has basis $\{1, \alpha, \alpha^2, \ldots, \alpha^n\}$.
- 154. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$.
 - (a) Carefully define what it means for α to be algebraic over \mathbb{F} .
 - (b) Carefully define what it means for α to be transcendental over \mathbb{F} .
 - (c) Carefully define what it means for α to be separable over \mathbb{F} .
 - (d) Carefully define what it means for α to be normal over \mathbb{F} .
 - (e) Carefully define what it means for α to be Galois over \mathbb{F} .
- 155. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that if α is algebraic over \mathbb{F} then $\mathbb{F}(\alpha)$ is a finite extension of \mathbb{F} .
- 156. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that if α is transcendental over \mathbb{F} then $\mathbb{F}(\alpha)$ is not a finite extension of \mathbb{F} .
- 157. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that if α is transcendental over \mathbb{F} then $\mathbb{F}(\alpha) \cong \mathbb{F}(x)$, where $\mathbb{F}(x)$ is the fraction field of the polynomial ring $\mathbb{F}[x]$.
- 158. Show that $\alpha = 2\pi i$ is algebraic over \mathbb{R} and transcendental over \mathbb{Q} .
- 159. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields. Let $\alpha \in \mathbb{E}$ and let $m_{\alpha}(x) \in \mathbb{F}[x]$ be the minimal polynomial of α over \mathbb{F} . Show that all roots of $m_{\alpha}(x)$ have the same multiplicity.
- 160. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that if $char(\mathbb{F}) = 0$ then all elements of \mathbb{E} are separable.
- 161. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that if \mathbb{F} is finite then all elements of \mathbb{E} are separable.

- 162. Show that if \mathbb{E}/\mathbb{F} is a finite separable extension of \mathbb{F} then there exists $\theta \in \mathbb{E}$ such that $\mathbb{E} = \mathbb{F}(\theta)$.
- 163. Let $\mathbb{E} \supseteq \mathbb{F}$ be a finite extension. Show that there exists $\theta \in \mathbb{E}$ such that $\mathbb{E} = \mathbb{F}(\theta)$ if and only if there are only a finite number of fields \mathbb{K} with $\mathbb{E} \supseteq \mathbb{K} \supseteq \mathbb{F}$.
- 164. Carefully define the finite field \mathbb{F}_{p^k} .
- 165. Provide the addition and multiplication tables for \mathbb{F}_2 and \mathbb{F}_4 and \mathbb{F}_3 and \mathbb{F}_9 .
- 166. Prove that there does not exist a field with 6 elements.
- 167. Show that the function

$$\begin{array}{cccc} \{\text{finite fields}\} & \longrightarrow & \{p^k \mid p \in \mathbb{Z}_{>0} \text{ is prime, } k \in \mathbb{Z}_{>0}\} \\ & \mathbb{F} & \longmapsto & \operatorname{Card}(\mathbb{F}) \end{array} \quad \text{ is a bijection.} \end{array}$$

168. Show that the finite field \mathbb{F}_{p^k} with p^k elements is given by

 \mathbb{F}_{p^k} is the extension of \mathbb{F}_p of degree k, $\mathbb{F}_{p^k} = \{ \alpha \in \overline{\mathbb{F}_p} \mid \alpha^{p^k} - \alpha = 0 \}, \mathbb{F}_{p^k} = (\overline{\mathbb{F}_p})^{F^k},$ where

$$F: \quad \overline{\mathbb{F}_p} \quad \to \quad \overline{\mathbb{F}_p} \\ \alpha \quad \mapsto \quad \alpha^p \quad \text{is the Frobenius map.}$$

169. Show that

$$\overline{\mathbb{F}_p} = \bigcup_{r \in \mathbb{Z}_{>0}} \mathbb{F}_{p^r}$$

- 170. Determine $\operatorname{Gal}(\mathbb{F}_{p^r}/\mathbb{F}_p)$.
- 171. Determine $\operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p)$.
- 172. Show that $\overline{\mathbb{F}_{p^r}} = \overline{\mathbb{F}_p}$. Determine $\operatorname{Gal}(\overline{\mathbb{F}_{p^r}}/\mathbb{F}_{p^r})$.
- 173. Determine $\operatorname{Gal}(\overline{\mathbb{C}}/\mathbb{C})$.
- 174. Determine $\operatorname{Gal}(\overline{\mathbb{R}}/\mathbb{R})$.
- 175. Determine $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.
- 176. Carefully define the cyclotomic field $\mathbb{Q}(\omega)$.

177. Carefully define primitive nth root of unity, nth cyclotomic polynomial and the Euler ϕ function.

- 178. Let $\Phi_n(x)$ be the *n*th cyclotomic polynomial. Show that $\Phi_n(x) \in \mathbb{Z}[x]$.
- 179. Let $\Phi_n(x)$ be the *n*th cyclotomic polynomial. Show that $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$.
- 180. Let $\Phi_n(x)$ be the *n*th cyclotomic polynomial. Show that

 $\phi(n) = \deg(\Phi_n(x)) = \operatorname{Card}((\mathbb{Z}/n\mathbb{Z})^{\times}) = (\text{the number of primitive } n\text{th roots of unity}).$

181. Let ω be a primitive *n*th root of unity. Show that $\mathbb{Q}(\omega)$ is the splitting field of $x^n - 1 \in \mathbb{Q}[x]$. 182. Let ω be a primitive *n*th root of unity. Show that $\mathbb{Q}(\omega)$ is the splitting field of $\Phi_n(x) \in \mathbb{Q}[x]$. 183. Let ω be a primitive *n*th root of unity. Show that $x^n - 1 \neq m_{\omega,\mathbb{Q}}(x)$ and $\Phi_n(x) = m_{\omega,\mathbb{Q}}(x)$.

- 184. Let ω be a primitive *n*th root of unity. Show that $\mathbb{Q}(\omega))/\mathbb{Q}$ is a Galois extension.
- 185. Let ω be a primitive *n*th root of unity. Show that $\operatorname{Gal}(\mathbb{Q}(\omega))/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- 186. Let ω be a primitive *n*th root of unity. Show that

$$[\mathbb{Q}(\omega):\mathbb{Q}] = |\operatorname{Gal}(\mathbb{Q}(\omega))/\mathbb{Q}) = |\phi(n).$$

- 187. Let $p \in \mathbb{Z}_{>0}$ be prime. Give a formula for $\Phi_p(x)$.
- 188. Let $p \in \mathbb{Z}_{>0}$ be prime and let $r \in \mathbb{Z}_{>0}$. Give a formula for $\Phi_{p^r}(x)$.
- 189. Let $n \in \mathbb{Z}_{>0}$. Show that $\prod_{d|n} \Phi_d(x) = x^n 1$.
- 190. Let $n \in \mathbb{Z}_{>0}$. Show that $\Phi_n(x) \in \mathbb{Q}[x]$.
- 191. Let $n \in \mathbb{Z}_{>0}$. Show that $\Phi_n(x) \in \mathbb{Z}[x]$.
- 192. Factor $\Phi_{12}(x)$ into irreducibles in $\mathbb{R}[x]$.
- 193. Prove that $\Phi_{12}(x)$ is irreducible in $\mathbb{Q}[x]$.
- 194. Let $n \in \mathbb{Z}_{>0}$. Show that $\Phi_n(x)$ is irreducible in $\mathbb{Q}[x]$.
- 195. Let $n \in \mathbb{Z}_{>0}$. Let $p \in \mathbb{Z}_{>0}$ such that p is prime and $p = 1 \mod n$. Show that $\Phi_n(x)$ factors into linear factors in $\mathbb{F}_p[x]$.
- 196. Let \mathbb{F} be the splitting field of $\Phi_{12}(x)$ over \mathbb{Q} . Show that the Galois group $\operatorname{Gal}(\mathbb{F}/\mathbb{Q})$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 197. Let $p \in \mathbb{Z}_{>0}$. Show that

p is prime if and only if $\frac{\mathbb{Z}}{p\mathbb{Z}}$ is a field.

198. Let $p \in \mathbb{Z}_{>0}$. Show that

p is prime if and only if $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is an integral domain.

199. Let \mathbb{F} be a field and let $m(x) \in \mathbb{F}[x]$. Show that

m(x) is irreducible in $\mathbb{F}[x]$ if and only if $\frac{\mathbb{F}[x]}{(m(x))}$ is a field.

200. Let \mathbb{F} be a field and let $m(x) \in \mathbb{F}[x]$. Show that

m(x) is irreducible in $\mathbb{F}[x]$ if and only if $\frac{\mathbb{F}[x]}{(m(x))}$ is an integral domain.

201. Show that $x^2 - 12$ is irreducible in $\mathbb{Q}[x]$.

202. Show that $8x^3 + 4399x^2 - 9x + 2$ is irreducible in $\mathbb{Q}[x]$.

203. Show that $2x^{10} - 25x^3 + 10x^2 - 30$ is irreducible in $\mathbb{Q}[x]$.

- 204. Determine all irreducible polynomials of degree ≤ 4 in $\mathbb{F}_2[x]$.
- 205. List all monic polynomials of degree ≤ 2 in $\mathbb{F}_3[x]$. Determine which of these are irreducible.
- 206. What is the difference between $\mathbb{Q}[5^{\frac{1}{3}}]$ and $Q(5^{\frac{1}{3}})$?
- 207. Show that $x^3 5$ does not factor into linear polynomials with coefficients in $\mathbb{Q}[5^{\frac{1}{3}}]$. Show that $\mathbb{Q}(5^{\frac{1}{3}}) = \mathbb{Q}[5^{\frac{1}{3}}]$ and has \mathbb{Q} -basis $\{1, 5^{\frac{1}{3}}, 5^{\frac{2}{3}}\}$. Let ζ be a primitive cube root of 1 and show that the splitting field of $x^3 5$ is $\mathbb{Q}(5^{\frac{1}{3}}, \zeta)$ and is dimension 9 as a \mathbb{Q} -vector space.
- 208. Let $\alpha = \sqrt{2} + \sqrt{3}$ in $\mathbb{R}_{\geq 0}$.
 - (a) Find $f(x) \in \mathbb{Q}[x]$ such that $\deg(f(x)) = 4$ and $f(\alpha) = 0$.
 - (b) Factor f(x) in $\mathbb{C}[x]$.
 - (c) Find $[\mathbb{Q}(\alpha) : \mathbb{Q}]$.
- 209. Let $f(x) = x^3 x + 4$ and let $\alpha \in \mathbb{C}$ be such that $f(\alpha) = 0$. Find the inverse of $\alpha^2 + \alpha + 1$ in $\mathbb{Q}(\alpha)$. More precisely, find $a, b, c \in \mathbb{Q}$ such that

$$(\alpha^2 + \alpha + 1)^{-1} = a + b\alpha + c\alpha^2.$$

- 210. Let $\mathbb{F} \subseteq R$ be a inclusion of rings and assume that \mathbb{F} is a field and R is an integral domain and $\dim_{\mathbb{F}}(R)$ is finite. Show that R is a field.
- 211. Let \mathbb{F} be a field and let $\alpha \in \overline{\mathbb{F}}$ such that $[\mathbb{F}(\alpha) : \mathbb{F}] = 5$. Show that $\mathbb{F}(\alpha^2) = \mathbb{F}(\alpha)$.
- 212. Let $\alpha \in \mathbb{C}$ be a root of $x^3 x + 1$. Determine the minimal polynomial of $\beta = \alpha^2 + 1$ over \mathbb{Q} .

213. Let $\mathbb{F} = \mathbb{C}(u)$. Let $f(x) = x^4 - 4x^2 + 2 - u \in \mathbb{F}[x]$.

- (a) Carefully state Gauss' lemma.
- (b) Prove that f(x) is irreducible in $\mathbb{F}[x]$.
- (c) Show that the C-algebra homomorphism given by

$$\begin{array}{rccc} \mathbb{C}(v)[x] & \to & \mathbb{C}(t)[x] \\ v & \mapsto & t^4 + t^{-4} & \text{has kernel} & (f(x)). \\ x & \mapsto & x \end{array}$$

(c) Let

$$\mathbb{K} = \frac{\mathbb{F}[x]}{(f(x))}.$$

Prove that \mathbb{K} is not a splitting field of f(x).

214. Show that if \mathbb{F} is a finite field then there exists $p \in \mathbb{Z}_{>0}$ prime and $r \in \mathbb{Z}_{>0}$ such that

$$\operatorname{Card}(\mathbb{F}) = p^r.$$

215. Let $n \in \mathbb{Z}_{>0}$. Show that the set

$$\{p(x) \in \mathbb{Q}[x] \mid \deg(p(x)) = n \text{ and } p(x) \text{ is irreducible}\}$$
 is infinite.

216. Let $p \in \mathbb{Z}_{>0}$ and let \mathbb{F} be a field with $\operatorname{char}(\mathbb{F}) = p$. Let $r \in \mathbb{Z}_{>0}$. Show that

$$\mathbb{K} = \{ x \in \mathbb{F} \mid x^{p^r} = x \}$$
 is a subfield of \mathbb{F} .

217. Let \mathbb{E} be a field and let H be a subgroup of Aut(\mathbb{E}). Show that

 $\mathbb{E}^{H} = \{ x \in \mathbb{E} \mid \text{if } h \in H \text{ then } h(\alpha) = \alpha \} \text{ is a subfield of } \mathbb{E}.$

218. Let \mathbb{K} be a field. Let G be a subgroup of Aut(\mathbb{K} and let N be a normal subgroup of G. Then

 $N \subseteq G \subseteq \operatorname{Aut}(\mathbb{K})$ so that $\mathbb{K}^G \subseteq \mathbb{K}^N$.

Define an injective homomorphism

$$G/N \to \operatorname{Aut}_{\mathbb{K}^G}(\mathbb{K}^N)$$

Is this an isomorphism?

- 219. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$.
 - (a) Carefully define what it means for α to be algebraic over \mathbb{F} .
 - (b) Carefully define what it means for α to be transcendental over \mathbb{F} .
 - (c) Carefully define what it means for α to be separable over \mathbb{F} .
 - (d) Carefully define what it means for α to be normal over \mathbb{F} .
 - (e) Carefully define what it means for α to be Galois over \mathbb{F} .

220. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields.

- (a) Carefully define what it means for \mathbb{E} to be a finite extension of \mathbb{F} .
- (b) Carefully define what it means for \mathbb{E} to be an algebraic extension of \mathbb{F} .
- (c) Carefully define what it means for \mathbb{E} to be a separable extension of \mathbb{F} .
- (d) Carefully define what it means for \mathbb{E} to be a normal extension of \mathbb{F} .
- (e) Carefully define what it means for \mathbb{E} to be a Galois extension of \mathbb{F} .
- 221. Determine which properties \mathbb{R}/\mathbb{Q} and \mathbb{C}/\mathbb{Q} and \mathbb{R}/\mathbb{Q} have (finite, algebraic, separable, normal, Galois).
- 222. Show that \mathbb{E}/\mathbb{F} is a Galois extension if and only if $[\mathbb{E};\mathbb{F}]$ is finite and $\operatorname{Gal}(\mathbb{E}/\mathbb{F}) = [\mathbb{E}:\mathbb{F}]$.
- 223. Show that if \mathbb{E} is a Galois extension of \mathbb{F} then $\operatorname{Fix}(\operatorname{Gal}(\mathbb{E}/\mathbb{F})) = \mathbb{F}$.
- 224. Show that if \mathbb{E} is a Galois extension of \mathbb{F} then $[\mathbb{E}:\mathbb{F}] = |\text{Gal}(\mathbb{E}/\mathbb{F})|$.
- 225. Show that if \mathbb{E}/\mathbb{K} is Galois and $\mathbb{E} \supseteq \mathbb{F} \supseteq \mathbb{K}$ are field inclusions then \mathbb{E}/\mathbb{F} is Galois.
- 226. Show that if \mathbb{E}/\mathbb{K} is Galois and $\mathbb{E} \supseteq \mathbb{F} \supseteq \mathbb{K}$ are field inclusions then \mathbb{F}/\mathbb{K} is Galois if and only if \mathbb{F} satisfies

if
$$\sigma \in \operatorname{Gal}(\mathbb{E}/\mathbb{K})$$
 then $\sigma \mathbb{F} = \mathbb{F}$.

227. Show that if \mathbb{E}/\mathbb{K} is Galois and $\mathbb{E} \supseteq \mathbb{F} \supseteq \mathbb{K}$ are field inclusions then \mathbb{F}/\mathbb{K} is Galois if and only if $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ is a normal subgroup of $\operatorname{Gal}(\mathbb{E}/\mathbb{K})$.

228. Show that if \mathbb{E}/\mathbb{K} is Galois and $\mathbb{E} \supseteq \mathbb{F} \supseteq \mathbb{K}$ are field inclusions then

 $\begin{array}{rcl} \operatorname{Gal}(\mathbb{E}/\mathbb{K}) & \to & \operatorname{Gal}(\mathbb{F}/\mathbb{K}) \\ \sigma & \mapsto & \sigma|_{H} \end{array} \quad \text{ is a group homomorphism with kernel } \operatorname{Gal}(\mathbb{E}/\mathbb{F}). \end{array}$

- 229. Show that $\mathbb{F} \supseteq \mathbb{K}$ is a finite separable extension then there exists a finite extension $\mathbb{E} \supseteq \mathbb{F} \supseteq \mathbb{K}$ such that \mathbb{E}/\mathbb{K} is Galois.
- 230. Show that the monic polynomials in $\mathbb{F}[x]$ index the ideals of $\mathbb{F}[x]$.
- 231. Let B be an \mathbb{F} -algebra. Show that $\operatorname{Hom}_{\mathbb{F}}(\mathbb{F}[x], B) \cong B$.
- 232. Show that the \mathbb{R} -algebra morphisms given by

$$\begin{array}{cccc} \frac{\mathbb{R}[x]}{(x^2+1)} & \to & \mathbb{C} \\ x & \mapsto & i \end{array} \quad \text{anc} \quad \begin{array}{c} \frac{\mathbb{R}[x]}{(x^2+1)} & \to & \mathbb{C} \\ x & \mapsto & -i \end{array}$$

are both isormorphisms.

- 233. Show that \mathbb{C} and \mathbb{R}^2 are not isomorphic are \mathbb{R} -algebras.
- 234. Give an \mathbb{R} -algebra isomorphism from $\mathbb{R}[x]/(x^2 + x + 1)$ and \mathbb{C} .
- 235. Give an \mathbb{R} -algebra isomorphism from $\mathbb{R}[x]/(x(x+1))$ and \mathbb{R}^2 .
- 236. Show that $[\mathbb{C}:\mathbb{R}]=2$.
- 237. Show that $[\mathbb{R} : \mathbb{Q}] = \infty$.
- 238. Let $f \in \mathbb{F}[x]$. Show that if $[\mathbb{F}[x]/(f) : \mathbb{F}] = \deg(f)$.
- 239. Let $A \subseteq B$ be an inclusion of k-algebras. Assume that B has a A-basis $\{b_1, \ldots, b_m\}$. Let $\{a_1, \ldots, a_n\}$ be a k-basis of A. Show that B has k-basis $\{a_ib_j \mid i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}\}$.
- 240. Show that $\operatorname{Card}(\overline{Q}) = \operatorname{Card}(\mathbb{Q}) = \operatorname{Card}(\mathbb{Z}) = \operatorname{Card}(\mathbb{Z}_{>0}).$
- 241. Prove that

$$\sum_{n \in \mathbb{Z}_{>\geq 0}} 10^{-n!} \qquad \text{is transcendental over } \mathbb{Q}.$$

- 242. Prove that e is transcendental over \mathbb{Q} .
- 243. Prove that π is transcendental over \mathbb{Q} .
- 244. Let $\mathbb{K} \supseteq \mathbb{F}$ be an extension. Show that the set of elements of \mathbb{K} that are algebraic over \mathbb{F} is a subfield of \mathbb{K} .
- 245. Let \mathbb{F} be a field. Show that if α is algebraic over \mathbb{F} then $\mathbb{F}[\alpha]$ is a field.
- 246. Let $\mathbb{K} \supseteq \mathbb{F}$ be a field extension and let $\alpha \in \mathbb{K}$. Let $f \in \mathbb{F}[x]$ be the minimal polynomial of α . Show that f is irreducible, that $\mathbb{F}(\alpha) = \mathbb{F}[\alpha]$ and that $\mathbb{F}(\alpha)$ has \mathbb{F} -basis $\{1, \alpha, \dots, \alpha^{n-1}\}$, where $n = \deg(f)$.
- 247. The "Theorem of Louiville" states that if $f: \mathbb{C} \to \mathbb{C}$ is holomorphic and bounded then f is constant. Use Louiville's theorem to prove that \mathbb{C} is algebraically closed. (Be sure to give a careful definition of \mathbb{C} .)

- 248. Let \mathbb{F} be a field. Carefully define algebraically closed and the algebraic closure of \mathbb{F} . Show that the algebraic closure of \mathbb{F} exists, is unique, is algebraic over \mathbb{F} and is algebraically closed.
- 249. Show that $\overline{\mathbb{Q}} \neq \mathbb{C}$.
- 250. Let \mathbb{F} be a field and let $J \subseteq \mathbb{F}[x]$. Carefully define the splitting field of J over \mathbb{F} . Show that the splitting field of J over \mathbb{F} exists, is unique, and is algebraic over \mathbb{F} .
- 251. Let \mathbb{F} be a field. Show that a finite dimensional \mathbb{F} -vector space is the same as a finitely generated \mathbb{F} -module.
- 252. Let \mathbb{F} be a field and let V be a finite dimensional \mathbb{F} -vector space. Explain why a linear transformation $T: V \to V$ is the same data as an $\mathbb{F}[x]$ -module structure on V.
- 253. Let R be a ring and let $n \in \mathbb{Z}_{>0}$. Show that an element of $GL_n(R)$ is the same data as an *R*-module isomorphism $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$.
- 254. Let R be a Euclidean domain. For $i \in \{1, \ldots, n-1\}, j \in \{1, \ldots, n\}, c \in R$ and $d \in R^{\times}$ let

$$x_{i,i+1}(c) = 1 + cE_{ij}, \qquad x_{i+1,i}(c) = 1 + cE_{i+1,i}, \qquad h_j(d) = 1 + (d-1)E_{jj}.$$

Show that $GL_n(R)$ is generated by the matrices

$$x_{i,i+1}(c), \quad x_{i+1,i}(c), \quad h_j(d), \quad \text{with} \quad c \in \mathbb{R}, d \in \mathbb{R}^{\times}$$

and $i \in \{1, ..., n-1\}$ and $j \in \{1, ..., n\}$.

255. Let R be a PID. For $i \in \{1, \ldots, n-1\}$, $j \in \{1, \ldots, n\}$, $d \in R^{\times}$ and $r, s, p, q \in R$ with rq - ps = 1, let

$$y_i \begin{pmatrix} r & s \\ p & q \end{pmatrix} = 1 + (r-1)E_{ii} + sE_{i,i+1} + pE_{i+1,i} + (q-1)E_{i+1,i+1}, \qquad h_j(d) = 1 + (d-1)E_{jj}.$$

Show that $GL_n(R)$ is generated by the matrices

$$y_i \begin{pmatrix} r & s \\ p & q \end{pmatrix}$$
 and $h_j(d)$, with $d \in R^{\times}$ and $r, s, p, q \in R$ such that $rq - ps = 1$,

and
$$i \in \{1, ..., n - 1\}$$
 and $j \in \{1, ..., n\}$.

- 256. Show that a Euclidean domain is a PID.
- 257. Show that a PID is a UFD.
- 258. Let $s, t \in \mathbb{Z}_{>0}$ and let $A \in M_{t \times s}(\mathbb{Z})$. Show that there exist $P \in GL_t(\mathbb{Z})$ and $Q \in GL_s(\mathbb{Z})$ such that PAQ is diagonal.
- 259. Let \mathbb{F} be a field. Let $s, t \in \mathbb{Z}_{>0}$ and let $A \in M_{t \times s}(\mathbb{F}[x])$. Show that there exist $P \in GL_t(\mathbb{F}[x])$ and $Q \in GL_s(\mathbb{F}[x])$ such that PAQ is diagonal.
- 260. Let R be a Euclidean domain. Let $s, t \in \mathbb{Z}_{>0}$ and let $A \in M_{t \times s}(R)$. Show that there exist $P \in GL_t(R)$ and $Q \in GL_s(R)$ such that PAQ is diagonal.
- 261. Let R be a PID. Let $s, t \in \mathbb{Z}_{>0}$ and let $A \in M_{t \times s}(R)$. Show that there exist $P \in GL_t(R)$ and $Q \in GL_s(R)$ such that PAQ is diagonal.

262. Let $p_1, p_2 \in \mathbb{Z}_{>0}$ be prime. Show that

$$\frac{\mathbb{Z}}{p_1 p_2 \mathbb{Z}} \cong \frac{\mathbb{Z}}{p_1 \mathbb{Z}} \oplus \frac{\mathbb{Z}}{p_2 \mathbb{Z}}.$$

263. Let $m, n \in \mathbb{Z}_{>0}$ with gcd(m, n) = 1. Show that

$$\frac{\mathbb{Z}}{mn\mathbb{Z}} \cong \frac{\mathbb{Z}}{m\mathbb{Z}} \oplus \frac{\mathbb{Z}}{n\mathbb{Z}}$$

264. Let \mathbb{F} be a field and let $a_1, a_2 \in \mathbb{F}$ with $a_1 \neq a_2$. Let $r, s \in \mathbb{Z}_{>0}$. Show that

$$\frac{\mathbb{F}[x]}{(x-a_1)^r(x-a_2)^s\mathbb{F}[x]} \cong \frac{\mathbb{F}[x]}{(x-a_1)^r\mathbb{F}[x]} \oplus \frac{\mathbb{F}[x]}{(x-a_2)^s\mathbb{F}[x]}$$

265. Let \mathbb{F} be a field and let $p(x), q(x) \in \mathbb{F}[x]$ with gcd(p(x), q(x)) = 1. Show that

$$\frac{\mathbb{F}[x]}{p(x)q(x)\mathbb{F}[x]} \cong \frac{\mathbb{F}[x]}{p(x)\mathbb{F}[x]} \oplus \frac{\mathbb{F}[x]}{q(x)\mathbb{F}[x]}$$

266. Let R be a.PID and let $p, q \in R$ with gcd(p,q) = 1. Show that

$$\frac{R}{pqR} \cong \frac{R}{pR} \oplus \frac{R}{qR}.$$

267. Compute the matrix of the action of x on

$$\frac{\mathbb{F}[x]}{(x^r + a_{r-1}x^{r-1} + \dots + a_1x + a_0)\mathbb{F}[x]} \quad \text{with respect to the } \mathbb{F}\text{-basis} \qquad \{1, x, \dots, x^{r-1}\}.$$

268. Let $\lambda \in \mathbb{F}$. Compute the matrix of the action of x on

$$\frac{\mathbb{F}[x]}{(x-\lambda)^d \mathbb{F}[x]} \quad \text{with respect to the } \mathbb{F}\text{-basis} \qquad \{1, x-\lambda, \dots, (x-\lambda)^{d-1}\}.$$

269. Let $p(x) = x^r + a_{r-1}x^{r-1} + \cdots + a_1x + a_0 \in \mathbb{F}[x]$. Compute the matrix of the action of x on

$$\frac{\mathbb{F}[x]}{p(x)^d \mathbb{F}[x]}$$

with respect to the $\mathbb F\text{-}\mathrm{basis}$

$$\{1, x, \dots, x^{r-1}\} \cup \{p(x), xp(x), \dots, x^{r-1}p(x)\} \cup \dots \cup \{p(x)^{d-1}, xp(x)^{d-1}, \dots, x^{r-1}p(x)^{d-1}\}.$$

270. Let $n \in \mathbb{Z}_{>0}$. Let \mathbb{F} be a field and let $A \in M_n(\mathbb{F})$. Prove that there exists $P \in GL_n(\mathbb{F})$ such that PAP^{-1} is in Jordan normal form.