16.4 Problem Sheet: Modules

1. (a) Let R be a principal ideal domain and I a nonzero ideal of R. Prove that there are only finitely many ideals J with $J \supset I$.
(b) Give an example of a unique factorisation domain R and a nonzero ideal I of R for which there are infinitely many ideals J with $J \supset I$.
2. Prove that the polynomial $x^{5}-7 x^{4}-3$ is irreducible in $\mathbb{Q}[x]$.
3. Let N be the submodule of the \mathbb{Z}-module \mathbb{Z}^{3} generated by the vectors

$$
\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
4 \\
3 \\
-1
\end{array}\right),\left(\begin{array}{l}
0 \\
9 \\
3
\end{array}\right) \text { and }\left(\begin{array}{c}
3 \\
12 \\
3
\end{array}\right) .
$$

Find a basis $\left\{b_{1}, b_{2}, b_{3}\right\}$ of \mathbb{Z}^{3}, and $d_{1}, d_{2}, d_{3} \in \mathbb{Z}$, such that the nonzero elements in the set $\left\{d_{1} b_{1}, d_{2} b_{2}, d_{3} b_{3}\right\}$ form a basis for N.
4. Let A be a $m \times n$ matrix. Then A determines a \mathbb{Z}-module homomorphism

$$
f_{A}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}
$$

by $f_{A}(\mathbf{v})=A \mathbf{v}$, with elements of \mathbb{Z}^{n} and \mathbb{Z}^{m} written as column vectors.
Similarly, the transpose A^{T} of A determines a \mathbb{Z}-module homomorphism

$$
f_{A^{T}}: \mathbb{Z}^{m} \rightarrow \mathbb{Z}^{n}
$$

Prove the cokernels of f_{A} and $f_{A^{T}}$ have isomorphic torsion subgroups. [Recall the cokernel of $\phi: M \rightarrow N$ is defined as the quotient $N / \operatorname{im}(\phi)$.
5. Let k be an algebraically closed field. Let V be a finite dimensional k-vector space and let $T: V \rightarrow V$ be a linear transformation. Define

$$
A=\bigcup_{i=1}^{\infty} \operatorname{ker}\left(T^{i}\right), \quad \text { and } \quad B=\bigcap_{i=1}^{\infty} \operatorname{im}\left(T^{i}\right)
$$

Prove that A and B are subspaces of V, and that $V \cong A \oplus B$.
6. Let M be an R-module. Show that for all $r \in R$ and $m \in M$ we have
(a) $0 m=0$
(b) $r 0=0$
(c) $(-r) m=-(r m)=r(-m)$.
7. Let R be a ring and $a_{1}, \ldots, a_{n} \in R$. Let $M=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n} \mid a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=\right.$ $0\}$. Prove that M is a submodule of R^{n}.
8. Let $N=\left\{(x, y, z) \in \mathbb{Z}^{3} \mid x+y+z=0\right\}$. Is N a free \mathbb{Z}-module? If so, find a basis.
9. Let $\phi: M \rightarrow N$ be a homomorphism of R-modules that is a bijection. Prove that $\phi^{-1}: N \rightarrow M$ is also a homomorphism.
10. Show that \mathbb{Q} is not free as a \mathbb{Z}-module (remember the basis may be infinite).
11. (a) Let V be a vector space over a field k. Let $T: V \rightarrow V$ be a linear transformation. Show that by defining $\left(\sum_{i} a_{i} x^{i}\right) \cdot v=\sum_{i} a_{i} T^{i}(v)$ defines the structure of a $k[x]$-module on V.
(b) Find an example of a vector space V, together with two linear transformations T and S, such that there does not exist a $k[x, y]$-module structure on V with $x \cdot v=T(v)$ and $y \cdot v=S(v)$ for all $v \in V$.
12. Let M be an R-module and N be a submodule of M. Find a natural bijection between submodules of M / N and submodules of M containing N. (This result sometimes goes by the name of the correspondence theorem)
13. Let R be a principal ideal domain, $p \in R$ an irreducible element, $k \geq 1$ and let M be the R-module $R /\left(p^{k}\right)$. Let $N=p^{k-1} M:=\left\{p^{k-1} m \mid m \in M\right\}$.
(a) Show that N is a submodule of M.
(b) Show that N is contained in every non-zero submodule of M. (Hint(??): Consider the surjective homomorphism $R \rightarrow M, a \mapsto a+\left(p^{k}\right)$.)
14. An R-module is called cyclic if it has a generating set with one element.
(a) Is a quotient of a cyclic module necessarily cyclic?
(b) Is a submodule of a cyclic module necessarily cyclic?
15. Let $f: N \rightarrow M$ be an injective homomorphism of R-modules. Suppose that there exists a homomorphism $\pi: M \rightarrow N$ such that $\pi(f(n))=n$ for all $n \in N$. Prove that $M \cong N \oplus X$ for some R-module X.
16. A module M is called Noetherian if for every sequence of submodules of M

$$
N_{0} \subset N_{1} \subset N_{2} \subset N_{3} \subset \cdots
$$

there exists k with $N_{k}=N_{k+1}=N_{k+2}=\cdots$.
(a) Show that a submodule of a Noetherian module is Noetherian.
(b) Show that a quotient of a Noetherian module is Noetherian.
(c) Show that if M^{\prime} is a submodule of M, and if M^{\prime} and M / M^{\prime} are both Noetherian, then M is Noetherian.
(d) Show that a Noetherian module is finitely generated.
(e) Can you use this to prove that the torsion submodule of a finitely generated module over a principal ideal domain is Noetherian?
17. Let $R=\mathbb{Z} /\left(p^{2}\right)$. Let M be a finite R-module. Suppose there is an injective R-module homomorphism $\iota: R \rightarrow M$. Prove that there exists a R-module homomorphism $\pi: M \rightarrow R$ such that $\pi \circ \iota(r)=r$ for all $r \in R$. How far can you generalise this?
18. Let

$$
A=\left(\begin{array}{llll}
3 & 8 & 7 & 9 \\
2 & 4 & 6 & 6 \\
1 & 2 & 1 & 1
\end{array}\right)
$$

(a) Find the Smith Normal form (over \mathbb{Z}) of the matrix A.
(b) If M is a \mathbb{Z}-module with presentation matrix A, then show that $M \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$.
(c) If N is a \mathbb{Q}-module with presentation matrix A, identify N.
19. Let V be a two dimensional vector space over \mathbb{Q} having basis $\left\{v_{1}, v_{2}\right\}$. Let T be the linear operator on V defined by $T\left(v_{1}\right)=3 v_{1}-v_{2}, T\left(v_{2}\right)=2 v_{2}$. Recall V (together with $\left.T\right)$ can be identified with a $\mathbb{Q}[t]$-module by defining $t u=T(u)$.
(a) Show that the subspace $U=\left\{a v_{2} \mid a \in \mathbb{Q}\right\}$ of V spanned by v_{2} is actually a $\mathbb{Q}[t]$-submodule of V.
(b) Consider the polynomial $f=t^{2}+2 t-3$. Determine the vectors $f v_{1}$ and $f v_{2}$, that is, express them as linear combinations of v_{1} and v_{2}.
20. Let X be a $n \times m$ matrix with entries in a ring R. Define an ideal $d_{1}(X)$ to be the ideal in R generated by all entries of X. Let A and B be invertible matrices (of the appropriate sizes) with entries in R. Prove that $d_{1}(A X B)=d_{1}(X)$.
21. Let M be an R-module. Suppose that U and V are two submodules of M. Show that $M \cong U \oplus V$ if and only if $U \cap V=\{0\}$, and $U+V=M$. [The definition of $U+V$ is $U+V=\{u+v \mid u \in$ $U, v \in V\}]$
22. Show that the \mathbb{Z}-module $\mathbb{Z} / p^{n} \mathbb{Z}$, where p is a prime and n a positive integer, is not a direct sum of two non-zero \mathbb{Z}-modules.
23. Up to isomorphism, how many abelian groups of order 96 are there?
24. With notation as in Question 20 let $d_{k}(X)$ be the ideal in R generated by all $k \times k$ minors in X. Prove that $d_{k}(A X B)=d_{k}(X)$.
25. Use the previous result to show that the elements d_{i} in Smith Normal Form are unique up to associates.
26. Find an isomorphic direct sum of cyclic groups, where V is an abelian group generated by x, y, z and subject to relations:
(a) $3 x+2 y+8 z=0,2 x+4 z=0$
(b) $x+y=0,2 x=0,4 x+2 z=0,4 x+2 y+2 z=0$
(c) $2 x+y=0, x-y+3 z=0$
(d) $4 x+y+2 z=0,5 x+2 y+z=0,6 y-6 z=0$.
27. Let V be the $\mathbb{Z}[i]$-module $(\mathbb{Z}[i])^{2} / N$ where

$$
N=\operatorname{span}_{\mathbb{Z}[i]}\{(1+i, 2-i),(3,5 i)\}
$$

Write V as a direct sum of cyclic modules.
28. Let \mathbb{F} be a field and define $D: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ by

$$
D\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}
$$

where $m=\underbrace{1+\cdots+1}_{m} \in \mathbb{F}$.
(a) Verify that $D(f g)=D(f) g+f D(g)$, for all $f, g \in \mathbb{F}[x]$.
(b) An element α is called a double root of f if $(x-\alpha)^{2}$ divides f. Prove that α is a double root of f if and only if $f(\alpha)=0$ and $(D f)(\alpha)=0$.
29. Let $E=\mathbb{Q}(\alpha)$, where $\alpha^{3}-\alpha^{2}+\alpha+2=0$. Express $\left(\alpha^{2}+\alpha+1\right)\left(\alpha^{2}-\alpha\right)$ and $(\alpha-1)^{-1}$ in the form $a \alpha^{2}+b \alpha+c$ with $a, b, c \in \mathbb{Q}$.
30. Given the matrix $A=\left(\begin{array}{ccc}1-x & 1+x & x \\ x & 1-x & 1 \\ 1+x & 2 x & 1\end{array}\right) \in M_{3 \times 3}(R), R=\mathbb{Q}[x]$, determine the R-module V presented by A. Is V a cyclic R-module? (A module is said to be cyclic if it is generated by a single element).
31. (a) Compute the characteristic polynomial of the following matrix: [as a reminder, the characteristic polynomial of a matrix A is $\operatorname{det}(\lambda I-A)$, which is a polynomial in the variable $\lambda]$

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & 0 & \cdots & 0 & -a_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right)
$$

(b) What is the characteristic polynomial of any matrix in rational canonical form?
(c) Use this to prove the Cayley-Hamilton Theorem: If A is a square matrix and $p(t)$ is its characteristic polynomial, then $p(A)=0$. [The Cayley-Hamilton theorem holds for matrices with entries in an arbitrary ring, but the intent of this question is to prove it for matrices with entries in a field. However, we can reduce the ring case to the field case (remember how we said to prove $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, we could say WLOG R was a field of characteristic zero)]
32. Let $R=\mathbb{Q}[x]$ and suppose that the R-module M is a direct sum of four cyclic modules

$$
\mathbb{Q}[x] /\left((x-1)^{3}\right) \oplus \mathbb{Q}[x] /\left(\left(x^{2}+1\right)^{2}\right) \oplus \mathbb{Q}[x] /\left((x-1)\left(x^{2}+1\right)^{4}\right) \oplus \mathbb{Q}[x] /\left((x+2)\left(x^{2}+1\right)^{2}\right) .
$$

(a) Decompose M into a direct sum of cyclic modules of the form $\mathbb{Q}[x] /\left(f_{i}^{m_{i}}\right)$, where f_{i} are monic irreducible polynomials in $\mathbb{Q}[x]$ and $m_{i}>0$.
(b) Find $d_{1}, d_{2}, \ldots, d_{k} \in \mathbb{Q}[x]$ monic polynomials with positive degree such that $d_{i} \mid d_{i+1}, i=$ $1, \ldots, k-1$ and $M \cong \mathbb{Q}[x] /\left(d_{1}\right) \oplus \cdots \oplus \mathbb{Q}[x] /\left(d_{k}\right)$.
(c) Identify the $\mathbb{Q}[x]$-module M with the vector space M over \mathbb{Q} together with a linear operator $X: M \rightarrow M, v \mapsto x v$. Suppose the matrix of X is A with respect to a \mathbb{Q}-vector space basis of M. Determine the minimal and characteristic polynomials of A and the dimension of M over \mathbb{Q}. (the minimal polynomial of A is the smallest degree monic polynomial $f(x) \in \mathbb{Q}[x]$ such that $f(A)=0$.)
33. Let $V=\mathbb{C}[t] /\left((t-\lambda)^{m}\right), \lambda \in \mathbb{C}, m>0$, be a cyclic $\mathbb{C}[t]$-module.
(a) Show that

$$
\left(w_{0}=\overline{1}, w_{1}=\overline{t-\lambda}, w_{2}=\overline{(t-\lambda)^{2}}, \ldots, w_{m-1}=\overline{(t-\lambda)^{m-1}}\right)
$$

is a basis of V as \mathbb{C}-vector space.
(b) Show that the matrix of $T: V \rightarrow V, v \mapsto t v$ with respect to the basis in (a) is of the form $A=\left(\begin{array}{cccccc}\begin{array}{c}\lambda \\ 1\end{array} & & & & \\ & \ddots & \ddots & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & 1\end{array}\right) \in M_{m \times m}(\mathbb{C})$.
34. Suppose that V is an 8 dimensional complex vector space and $T: V \rightarrow V$ is a linear operator. Using T we make V into a $\mathbb{C}[t]$-module in the usual way. Suppose that as a $\mathbb{C}[t]$-module

$$
V \cong \mathbb{C}[t] /\left((t+5)^{2}\right) \oplus \mathbb{C}[t] /\left((t-3)^{3}(t+5)^{3}\right)
$$

What is the Jordan (normal) form for the transformation T ? What are the minimal and characteristic polynomials of T ?
35. Let V be an $F[t]$-module and $\left(v_{1}, \ldots, v_{n}\right)$ a basis of V as an F-vector space. Let $T: V \rightarrow V$ be a linear operator and $A \in M_{n \times n}(F)$ the matrix of T with respect to the basis $\left(v_{1}, \ldots, v_{n}\right)$. Prove that the $F[t]$-matrix $t I-A$ is a presentation matrix of (V, T) regarded as a $F[t]$-module.
36. Determine the Jordan normal form of the matrix $A=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1\end{array}\right) \in M_{3 \times 3}(\mathbb{C})$ by decomposing the $\mathbb{C}[t]$-module V presented by the matrix $t I-A \in M_{3 \times 3}(\mathbb{C}[t])$.
37. Find all possible Jordan normal forms for a matrix $A \in M_{5 \times 5}(\mathbb{C})$ whose characteristic polynomial is $(t+2)^{2}(t-5)^{3}$.
38. Let M be an R-module. Show that $N \subseteq M$ is a submodule if and only if
(a) N is nonempty,
(b) If $n_{1}, n_{2} \in N$ then $n_{1}+n_{2} \in N$,
(c) If $n \in N$ and $c \in R$ then $c n \in N$.
39. Let $\varphi: V \rightarrow W$ be an R-module homomorphism. Shoe that $\operatorname{ker}(\varphi)$ is a submoduel of V and that $\operatorname{im}(\varphi)$ is a submodule of W.
40. Let M be an R-module.
(a) If $m \in M$ then $0 m=0$,
(b) if $r \in R$ then $r 0=0$,
(c) if $r \in R$ and $m \in M$ then $(-r) m=-(r m)=r(-m$.
41. State and prove module versions of the three isomorphism theorems, and the correspondence theorem.
42. Let R be a ring and let V be a free module of finite rank over R.
(a) Show that every set of generators of V contains a basis of V.
(b) Show that every linearly independent set in V can be extended to a basis of V.
43. Llet M be an R-module. Suppose that U and V are two submodules of M satisfying $U \cap V=\{0\}$ and $U+V=M$. Show that $M \cong U \oplus V$.
44. Let U and V be R-modules and $M=U \oplus V$. Define submodules U^{\prime} and V^{\prime} of M by

$$
U^{\prime}=\{(u, 0) \mid u \in U\} \quad \text { and } \quad V^{\prime}=\{(0, v) \mid v \in V\} .
$$

Show that $U^{\prime} \cap V^{\prime}=\{0\}, U^{\prime}+V^{\prime}=M$ and $U^{\prime} \cong U$ and $V^{\prime} \cong V$.
45. Show that if $M_{1}, M_{2}, N_{1}, N_{2}$ are R-modules then

$$
\frac{M_{1} \oplus M_{2}}{N_{1} \oplus N_{2}} \cong \frac{M_{1}}{N_{1}} \oplus \frac{M_{2}}{N_{2}} .
$$

46. Let R be a PID. Let $p \in R$ be irreducible, $k \in \mathbb{Z}_{\geq 1}$ and $M=\frac{R}{p^{k} R}$. Let $N=p^{k-1} M$.
(a) Show that N is a submodule of M.
(b) Show that N is contained in every non-zero submodule of M.
47. Show that $R-\operatorname{span}(S)=\left\{r_{1} v_{1}+\cdots r_{k} v_{k} \mid k \in \mathbb{Z}_{>0}, r_{1}, \ldots, r_{k} \in R\right.$ and $\left.v_{1}, \ldots, v_{k} \in S\right\}$.
48. Let M be an R-module. Prove that a subset S of M is a basis of M if and only if every element of M can be written uniquely as a linear combination of elements from S.
49. Let R be an integral domain. Let I be an ideal in R. Show that I is a free R-module if and only if it is principal.
50. Let F and G be two free R-modules of rank m and n respectively. Shwo that the R-module $F \oplus G$ is free of rank $m+n$.
51. Show that if N and M / N are finitely generated as R-modules then M is also a finitely generated R-module.
52. Prove that \mathbb{Q} is not finitely generated as a \mathbb{Z}-module.
53. Show that a quotient of a cyclic module is cyclic.
54. Show that a submodule of a cyclic module is cyclic.
55. Let $M=\mathbb{Z} \oplus \mathbb{Z}$ and let $N=\mathbb{Z}$-span $\{(0,3)\}$.

Write M / N as a direct sum of cyclic submodules.
56. Let $M=\mathbb{Z} \oplus \mathbb{Z}$ and let $N=\mathbb{Z}$-span $\{(2,0),(0,3)\}$.

Write M / N as a direct sum of cyclic submodules.
57. Let $M=\mathbb{Z} \oplus \mathbb{Z}$ and let $N=\mathbb{Z}$-span $\{(2,, 3)\}$.

Write M / N as a direct sum of cyclic submodules.
58. Let $M=\mathbb{Z} \oplus \mathbb{Z}$ and let $N=\mathbb{Z}$-span $\{(6,9)\}$.

Write M / N as a direct sum of cyclic submodules.
59. Let V be a two dimensional vector space over \mathbb{Q} having basis $\left\{v_{1}, v_{2}\right\}$. Let T be the linear transformation on V defined by $T\left(v_{1}\right)=3 v_{1}-v_{2}$ and $T\left(v_{2}\right)=2 v_{2}$. Make V into a $\mathbb{Q}[X]$-module by defining $X u=T(u)$.
(a) Show that the subspace $U=\left\{a v_{2} \mid a \in \mathbb{Q}\right\}$ is a $\mathbb{Q}[X]$-submodule of V.
(b) Let $f=X^{2}+2 X-3 \in \mathbb{Q}[X]$. Determine the vectors $f v_{1}$ and $f v_{2}$ as linear combinations of v_{1} and v_{2}.
60. Let M be an R-module and let $m \in M$. Show that $\operatorname{ann}(m)$ is an ideal in R.
61. Let M be an R-module. Show that $\operatorname{Tor}(M)$ is a submodule of M.
62. Let R be a integral domain and let M be a free R-module. Show that M is torsion free.
63. Give an example of an integral domain R and an R-module M such that M is torsion free and M is not free.
64. Let I be an ideal in R. Show that $\operatorname{ann}(R / I)=I$.
65. Let M_{1} and M_{2} be R-modules. Show that $\operatorname{ann}\left(M_{1} \oplus M_{2}\right)=\operatorname{ann}\left(M_{1}\right) \oplus \operatorname{ann}\left(M_{2}\right)$.
66. Show that R is a torsion free R-module if and only if R is an integral domain.
67. Show that \mathbb{Q} as a \mathbb{Z}-module is torsion free but not free.
68. Let R be a PID. Let M be a simple R-module. Show that either R is a field and $M \cong R$ or R is not a field and $M \cong R / p R$ for some prime $p \in R$.
69. Let $R=\mathbb{Z} / 6 \mathbb{Z}$ and let $F=R^{\oplus 2}$. Write down a basis of F. Let $N=\{(0,0),(3,0)\}$. Show that N is a submodule of the free module F and N is not free.
70. Let $R=\mathbb{Z}$ and $F=\mathbb{Z}^{3}$. Let $N=\{(x, y, z) \in F \mid x+y+z=0\}$. Show that N is a submodule of F and find a basis of N.
71. Let $A=\left(\begin{array}{lll}7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3\end{array}\right)$. Find $L, R \in G L_{3}(\mathbb{Z})$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Z}_{\geq 0}$ such that $d_{3} \mathbb{Z} \subseteq d_{2} \mathbb{Z} \subseteq d_{1} \mathbb{Z}$ and $L A R=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
72. Let $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$. Find $L, R \in G L_{2}(\mathbb{Z})$ and $d_{1}, d_{2} \in \mathbb{Z}_{\geq 0}$ such that $d_{2} \mathbb{Z} \subseteq d_{1} \mathbb{Z}$ and $L A R=$ $\operatorname{diag}\left(d_{1}, d_{2}\right)$.
73. Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$. Find $L \in G L_{2}(\mathbb{Z})$ and $R \in G L_{3}(\mathbb{Z})$ and $d_{1}, d_{2} \in \mathbb{Z}_{\geq 0}$ such that $d_{2} \mathbb{Z} \subseteq d_{1} \mathbb{Z}$ and $L A R=\operatorname{diag}\left(d_{1}, d_{2}\right)$.
74. Let $A=\left(\begin{array}{ccc}-4 & -6 & 7 \\ 2 & 2 & 4 \\ 6 & 6 & 15\end{array}\right)$. Find $L, R \in G L_{3}(\mathbb{Z})$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Z}_{\geq 0}$ such that $d_{3} \mathbb{Z} \subseteq d_{2} \mathbb{Z} \subseteq d_{1} \mathbb{Z}$ and $L A R=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
75. Let $R=\mathbb{Q}[X]$. Let $A=\left(\begin{array}{ccc}1-X & 1+X & X \\ X & 1-X & 1 \\ 1+X & 2 X & 1\end{array}\right)$. Find $P, Q \in G L_{3}(R)$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Q}[X]_{\text {monic }}$ such that $d_{3} R \subseteq d_{2} R \subseteq d_{1} R$ and $P A Q=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
76. Let $R=\mathbb{Q}[X]$. Let $A=\left(\begin{array}{ccc}X & 1 & -2 \\ -3 & X+4 & -6 \\ -2 & 2 & X-3\end{array}\right)$. Find $P, Q \in G L_{3}(R)$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Q}[X]_{\text {monic }}$ such that $d_{3} R \subseteq d_{2} R \subseteq d_{1} R$ and $P A Q=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
77. Let $R=\mathbb{Q}[X]$. Let $A=\left(\begin{array}{ccc}X & 0 & 0 \\ 0 & 1-X & 0 \\ 0 & 0 & 1-X^{2}\end{array}\right)$. Find $P, Q \in G L_{3}(R)$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Q}[X]_{\text {monic }}$ such that $d_{3} R \subseteq d_{2} R \subseteq d_{1} R$ and $P A Q=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
78. . Let R be an integral domain. Let V be a free R-module of rank d. Define $\operatorname{End}_{R}(V)$, explain (with proof) how it is a ring, and show that $\operatorname{End}_{R}(V) \cong M_{d \times d}(R)$.
79. Let R be an integral domain. Let V be a free R-module with basis $\left\{v_{1}, \ldots, v_{d}\right\}$. Let $\varphi: V \rightarrow V$ be an R-module morphism. Prove that $\left\{\varphi\left(v_{1}\right), \ldots, \varphi\left(v_{d}\right)\right\}$ is a basis of V if and only if φ is an isomorphism.
80. Let $A \in M_{d \times d}(\mathbb{Z})$ and let φ be the \mathbb{Z}-module morphism given by

$$
\begin{aligned}
\varphi: \quad \mathbb{Z}^{k} & \rightarrow \mathbb{Z}^{k} \\
v & \mapsto A v .
\end{aligned} \quad \text { Show that } \quad \operatorname{Card}\left(\frac{\mathbb{Z}^{k}}{\operatorname{im}(\varphi)}\right)= \begin{cases}|\operatorname{det}(A)|, & \text { if } \operatorname{det}(A) \neq 0 \\
\infty, & \text { if } \operatorname{det}(A)=0\end{cases}
$$

81. Let V be the $\mathbb{Z}[i]$-module $(\mathbb{Z}[i])^{2} / N$, where $N=\mathbb{Z}[i]$-span $\{(1+i, 2-i),(3,5 i)\}$. Write V as a direct sum of cyclic modules.
82. Let $p \in \mathbb{Z}_{>0}$ prime and let $n \in \mathbb{Z}_{>\geq 0}$. Show that the \mathbb{Z}-module $\mathbb{Z} / p^{n} \mathbb{Z}$ is not a direct sum of two nontrivial \mathbb{Z}-modules.
83. Let $R=\mathbb{Q}[X]$ and suppose that the rotsion R-module M is a direct sum of four cyclic modules whose annihilators are $(X-1)^{3},\left(X^{2}+1\right)^{3},(X-1)\left(X^{2}+1\right)^{4}$ and $(X+2)\left(X^{2}+1\right)^{2}$. Determine the primary decomposition of M and the invariant factor decomposition of M. If M is thought of as a \mathbb{Q}-vector space on which X acts as a linear transformation denoted A, determine the mninimal and the characteristic polynomials of A and the dimension of M over \mathbb{Q}.
84. How many abelian groups of order 136 are there? Give the primary and invariant factor decompositions of each.
85. Determine the invariant factors of the abelaingroup $C_{100} \oplus C_{36} \oplus C_{150}$.
86. Find a direct sum of cyclic groups which is isomorphic to the abeliangroup \mathbb{Z}^{3} / N, where N is generated by $\{(2,2,2),(2,2,0),(2,0,2)\}$.
87. Find an isomorphic direct product of cyclic groups and the invariant factors of V, where V is an abeliangroup

$$
\text { generated by } x, y, z \text { with relations } 3 x+2 y+8 z=0 \text { and } 2 x+4 z=0
$$

88. Find an isomorphic direct product of cyclic groups and the invariant factors of V, where V is an abeliangroup generated by x, y, z with relations $\quad x+y=0,2 x=0,4 x+2 z=0$ and $4 x+2 y+2 z=0$.
89. Find an isomorphic direct product of cyclic groups and the invariant factors of V, where V is an abeliangroup
generated by x, y, z with relations $2 x+y=0$ and $x-y+3 z=0$.
90. Find an isomorphic direct product of cyclic groups and the invariant factors of V, where V is an abeliangroup
generated by x, y, z with relations $4 x+y+2 z=0,5 x+2 y+z=0$ and $6-6 z=0$.
91. Let V be a \mathbb{C}-vector space with $\operatorname{dim}(V)=8$ and $T: V \rightarrow V$ a linear transformation. Suppose that, as a $\mathbb{C}[t]$-module

$$
V \cong \frac{\mathbb{C}[t]}{(t+5)^{2} \mathbb{C}[t]} \oplus \frac{\mathbb{C}[t]}{(t-3)^{3}(t+5)^{3} \mathbb{C}[t]}
$$

What is the Jordan normal form for the transformation T ? What are the eigenvalues of T and how many eigenvectors does T have? What are the minimal and characteristic polynomials of T?
92. Determine the Jordan normal form of the matrix $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$ by calculating the invariant factor matrix of $X-A$.
93. Find all possible Jordan normal forms for a matrices with characteristic polynomial $(t+2)^{2}(t-5)^{3}$.
94. Find the Smith normal form of $A=\left(\begin{array}{ccc}5 & -4 & 1 \\ -1 & -1 & -2 \\ 3 & 0 & 3\end{array}\right)$ over \mathbb{Z}.
95. Find the rational canonical form of $A=\left(\begin{array}{ccc}5 & -4 & 1 \\ -1 & -1 & -2 \\ 3 & 0 & 3\end{array}\right)$ over \mathbb{Q}.
96. Find the Jordan canonical form of $A=\left(\begin{array}{ccc}5 & -4 & 1 \\ -1 & -1 & -2 \\ 3 & 0 & 3\end{array}\right)$ over \mathbb{C}.
97. Find the Smith normal form of $\left(\begin{array}{ccc}11 & -4 & 7 \\ -1 & 2 & 1 \\ 3 & 0 & 3\end{array}\right)$ over \mathbb{Z}.
98. Let R be a PID and let $a, b \in R$. Prove that $a=b c$ implies $a R \subseteq b R$.
99. Let R be a PID and let $a, b \in R$. Prove that $a R=R$ implies that a is a unit.
100. Let R be a PID and let $a, b \in R$. Prove that $a R=b R$ implies that there exists $u \in R^{\times}$such that $a u=b$.
101. Let R be a PID and let $a, b \in R$. What is the definition of $\operatorname{gcd}(a, b)$? Using your definition state and prove Bezout's Lemma in a PID.
102. Let R be a PID, let K be a field and let $\phi: R \rightarrow K$ be a ring homomorphism. Prove that the kernel of ϕ is a prime ideal.
103. Let R be a PID, let K be a field and let $\phi: R \rightarrow K$ be a ring homomorphism. Prove that the image of ϕ is either a field or is isomorphic to R.
104. Let A be the abelian group with generators a, b, c and relations

$$
3 a=b-c, \quad 6 a=2 c, \quad 3 b=4 c .
$$

(a) Find the generator mmatrix for A.
(b) Bring this matrix into Smith normal form, carefully recording each step.
(c) By the classification theorem for finitely generated abelain groups, A is isomorphic to a cartesian product of cyclic groups of prime power order and/or copies of \mathbb{Z}. Which group is it?
(d) Write down an explicit isomorphism from A to the group you have identified in part (c).
(e) Interpret the meaning of the three matrices L, D and R in this context.
105. Let $A=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & -1 & 2\end{array}\right)$.
(a) Use whichever method you prefer to bring A into Jordan normal form. Carefully record your steps.
(b) Recall how to use A to equip \mathbb{C}^{3} with the sturcture of a $\mathbb{C}[x]$-module.
(c) Write down generators and relations for the $\mathbb{C}[x]$ module encoded by A.
(d) The structure theorem for module over a PID gives you a different (potentially smaller) set of generators and relations. What is it in this example?
(e) Find an explicit isomorphism between the representations of parts (c) and (d).
106. Let R be a PID and let F and G be free R-modules of finite rank. Let $\varphi: F \rightarrow G$ be and R-module morphism. Show that the rank of $\operatorname{im}(\varphi)$ is bounded bove by the rank of F.
107. Let M be a R-module such that all R-submodules are finitely generated. Show that M satisfies ACC.
108. Let M be the $\mathbb{Q}[x]$-module given by

$$
M=\frac{\mathbb{Q}[x]}{\left(x^{2}+x+1\right) \mathbb{Q}[x]} \oplus \frac{\mathbb{Q}[x]}{\left(x^{3}-1\right) \mathbb{Q}[x]} \oplus \frac{\mathbb{Q}[x]}{(x-3)^{2} \mathbb{Q}[x]} .
$$

Let $T: M \rightarrow M$ be the \mathbb{Q}-linear transformation given by $T(u)=X u$.
(a) Give the primary decomposition of M as a $\mathbb{Q}[x]$-module.
(b) What is the dimension of M as a vector space over \mathbb{Q} ?
(c) What is the minimal polynomial of T ?

109 . Let M be the $\mathbb{C}[x]$-module given by

$$
M=\frac{\mathbb{C}[x]}{\left(x^{2}+x+1\right) \mathbb{C}[x]} \oplus \frac{\mathbb{C}[x]}{\left(x^{3}-1\right) \mathbb{C}[x]} \oplus \frac{\mathbb{C}[x]}{(x-3)^{2} \mathbb{C}[x]}
$$

Let $T: M \rightarrow M$ be the \mathbb{C}-linear transformation given by $T(u)=X u$.
(a) Give the primary decomposition of M as a $\mathbb{C}[x]$-module.
(b) What is the Jordan normal form matrix for T ?
110. . Let $\varphi: \mathbb{Z}^{4} \rightarrow \mathbb{Z}^{3}$ be the \mathbb{Z}-module homomorphism determined by $\varphi(1,0,0,0)=(14,8,2), \quad \varphi(0,1,0,0)=(12,6,0), \quad \varphi(0,0,1,0)=(18,12,0), \quad \varphi(0,0,0,1)=(0,6,0)$.
(a) Find bases for \mathbb{Z}^{3} and \mathbb{Z}^{4} such that the matrix of φ with respect to these bases is in Smith normal form.
(b) Find the invariant factor decomposition of the \mathbb{Z}-module $\mathbb{Z}^{4} / \operatorname{im}(\varphi)$.
111. Define carefully what it means for an R-module to be finitely generated.
112. Let M and N be R-modules. Show that if N and M / N are finitely generated then M is finitely generated.
113. Give an example of a \mathbb{Z}-module that is not finitely generated.
114. Let M be the $\mathbb{Z}[i]$-module given by $M=\mathbb{Z}[i]^{3} / N$ where N is the submodule of $\mathbb{Z}[i]^{3}$ generated by

$$
\{(-i, 0,0),(1-2 i, 0,1+i),(1+2 i,-2 i, 1+3 i)\}
$$

If

$$
A=\left(\begin{array}{ccc}
-i & 1-2 i & 1+2 i \\
0 & 0 & -2 i \\
0 & 1+i & 1+3 i
\end{array}\right), \quad X=\left(\begin{array}{ccc}
i & 2 & 0 \\
0 & 0 & -i \\
0 & i & 1+i
\end{array}\right), \quad Y=\left(\begin{array}{ccc}
-i & i & 1+i \\
0 & 1 & -i \\
0 & 0 & 1
\end{array}\right)
$$

then

$$
X^{-1} A Y=\left(\begin{array}{ccc}
i & 0 & 0 \\
0 & 1-i & 0 \\
0 & 0 & 2
\end{array}\right)
$$

(a) Write M as a direct sum of nontrivial cyclic $\mathbb{Z}[i]$-modules.
(b) Calculate the annihilator of M.
(c) Find an element $u \in M-\{0\}$ with the property that $i u=u$.
115. Let V be a complex vector space of dimension 9 and let $T: V \rightarrow V$ be a linear transformation. Explain how T can be used to make V into a $\mathbb{C}[X] 0$-module.
116. Let V be a complex vector space of dimension 9 and let $T: V \rightarrow V$ be a linear transformation. Suppose that, as a $\mathbb{C}[X]$-module,

$$
V \cong \frac{\mathbb{C}[X]}{(X-5)^{2}(X+2)^{2}} \oplus \frac{\mathbb{C}[X]}{(X+5)^{2}(X+2)^{2}}
$$

(i) What is the Jordan normal form of T ?
(ii) What are the minimal and characteristic polynomials of T ?
117. State the structure theorem for finitely generated modules over a principal ideal domain.
118. Let V be the $\mathbb{Q}[X]$-module given by $V=\mathbb{Q}[X]^{4} / N$ where N is the submodule of $\mathbb{Q}[X]^{4}$ generated by

$$
\left\{(1,0,1,0),(1, X, 0,0),(1,0,-X, 0),\left(-1,0,1, x^{2}\right)\right\}
$$

(i) Find the invariant factor decomposition of V.
(ii) Write down the primary decomposition of V.
119. (a) Give the definitions of a module and a free module.
(b) Give an example of a free module having a proper submodule of the same rank.
(c) Show that, as a \mathbb{Z}-module, \mathbb{Q} is torsion free but not free.
120. State the structure theorem for finitely generated modules over a PID.
121. (a) Let $N \subseteq \mathbb{Z}^{3}$ be the submodule generated by the set $\{(2,4,1),(2,-1,1)\}$. Find a basis $\left\{f_{1}, f_{2}, f_{3}\right\}$ for \mathbb{Z}^{3}, and elements $d_{1}, d_{2}, d_{3} \in \mathbb{Z}$ such that the nonzero elements $\left\{d_{1} f_{1}, d_{2} f_{2}, d_{3} f_{3}\right\}$ form a basis for N and $d_{1}\left|d_{2}\right| d_{3}$.
(b) Write \mathbb{Z}^{3} / N as a direct sum of nontrivial cyclic \mathbb{Z}-modules.
122. Explain why there is no $u \in \mathbb{Z}^{3}$ such that $\{(2,4,1),(2,-1,1), u\}$ is a basis of \mathbb{Z}^{3}.
123. Let V be an 8-dimensional complex vector space and let $T: V \rightarrow V$ be a linear transformation. Explain how V can be regarded as a $\mathbb{C}[X]$-module.

124 . Let V be the $\mathbb{C}[X]$-modules given by

$$
V=\frac{\mathbb{C}[X]}{(X-2)(X-3)^{2}} \oplus \frac{\mathbb{C}[X]}{(X-2)(X-3)^{3}}
$$

Let $T: V \rightarrow V$ be the linear transformation determined by the action of T.
(i) What is the Jordan Normal Form of T ?
(ii) What is the minimal polynomial of T ?
(ii) What is the dimension of the eigenspace of T correspondng to the eigenvalue 3 ?
125. Define what it means to say that a module is torsion free.
126. Let R be an integral domain. Show that a free R-module is torsion free..
127. Give an example of a finitely generated R-module that is torsion-free but not free.
128. Let R be a commutative unital ring, let F be a free R-module and let $\varphi: M \rightarrow F$ be a surjective module homomorphism. Show that $M \cong F \oplus \operatorname{ker}(\varphi)$.
129. State the structure theorem for finitely generated modules over a PID.
130. Let M be the \mathbb{Z}-module given by $M=\mathbb{Z}^{4} / N$, where N is the submodule of \mathbb{Z}^{4} generated by $\{(15,1,8,1),(0,2,0,2),(7,1,4,1)\}$.
(i) Write M as a direct sum of non-trivial cyclic \mathbb{Z}-modules.
(ii) What is the torsion-free rank of M ?
131. Let V be a finite dimensional real vector space and let $T: V \rightarrow V$ be a linear transformation. View V as an $\mathbb{R}[X]$-module. Show that V is finitely generated and is a torsion module.
132. Assume that

$$
M \cong \frac{\mathbb{R}[X]}{\left(X^{2}+1\right)^{2}(X-2)} \oplus \frac{\mathbb{R}[X]}{\left(X^{2}-1\right)^{2}} \oplus \frac{\mathbb{R}[X]}{(X-1)}
$$

(i) What is the primary decomposition of M ?
(ii) What is the dimension of V as a real vector space?
(iii) What is the minimal polynomial of T ?
133. Let M be a module. Define carefully what it means to say that M is free.
134. Give an example of a submodule of a free module that is not free.
135. Give an example of a free module M and a generating set $S \subseteq M$ such that M does not contain a basis.
136. Show that \mathbb{Q}, considered as a \mathbb{Z}-module, is not free.
137. State the structure theorem for finitely generated modules over a principal ideal domain.
138. Determine the invariant factor decomposition of the abelian group given by \mathbb{Z}^{3} / N where N is the submodule of \mathbb{Z}^{3} generated by $\{(7,4,1),(8,5,2),(7,4,1,5)\}$.
139. Let A be the abelian group given by $A=\mathbb{Z}^{3} / N$ where N is the submodule of \mathbb{Z}^{3} generated by $\{(-4,2,6),(-6,2,6),(7,4,15)\}$. If

$$
R=\left(\begin{array}{ccc}
-4 & -6 & 7 \\
2 & 2 & 4 \\
6 & 6 & 15
\end{array}\right), \quad X=\left(\begin{array}{ccc}
1 & 0 & 0 \\
6 & 1 & 2 \\
21 & 3 & 7
\end{array}\right) \quad Y=\left(\begin{array}{ccc}
0 & 3 & -1 \\
1 & -2 & 3 \\
1 & 0 & 2
\end{array}\right)
$$

then

$$
X^{-1} R Y=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 6
\end{array}\right)
$$

(i) Find a basis $\left\{b_{1}, b_{2}, b_{3}\right\}$ of \mathbb{Z}^{3} such that $\left\{d_{1} b_{1}, d_{2} b_{2}, d_{3} b_{3}\right\}$ generates N.
(ii) Find elements $u \in A$ and $v \in A$ that generate A and are such that $2 u=0$ and $6 v=0$.
140. Let $A \in M_{6 \times 6}(\mathbb{C})$ such that $x I-A \in M_{6 \times 6}(\mathbb{C}[x]$ is equivalent to the diagonal matrix $\operatorname{diag}(1,1,1,(x-$ $\left.2),(x-2),(x-2)^{2}(x-4)^{2}\right) \in M_{6 \times 6}(\mathbb{C}[x])$.
(i) What is the Jordan normal form of A ?
(ii) What are the characteristic and minimal polynomials of A ?
141. Let V be the $\mathbb{R}[x]$ module given by

$$
V=\frac{\mathbb{R}[x]}{(x-1)} \oplus \frac{\mathbb{R}[x]}{\left(x^{2}-2\right)} \oplus \frac{\mathbb{R}[x]}{\left(x^{2}+2\right)}
$$

(i) Calculate the primary decomposition of V.
(ii) Calculate the invariant factor decompositions of V.
(iii) What is the dimension of V when considered as a vector space over \mathbb{R} ?
142. What does it mean to say that an R-module is free?
143. Let $R=\mathbb{R}[X, Y]$ and let $I=(X, Y)$ be the ideal generated by X and Y. Show that I considered as an R-module is not free.
144. Give the definition of the torsion submodule of an R-module.
145. Suppose that R is an integral domain and M is an R-module. Let T be the torsion submodule of M. Show that the R-module M / T is torsion free.
146. Let F be the \mathbb{Z}-module \mathbb{Z}^{3} and let N be the submodule generated by

$$
\{(4,-4,4),(-4,4,8),(16,20,4)\}
$$

Calculate the invariant factor decomposition of F / N.
147. Let F be the \mathbb{Z}-module \mathbb{Z}^{3} and let N be the submodule generated by

$$
\{(4,-4,4),(-4,4,8),(16,20,4)\} .
$$

Calculate the primary decomposition of F / N.
148. Let F be the \mathbb{Z}-module \mathbb{Z}^{3} and let N be the submodule generated by

$$
\{(4,-4,4),(-4,4,8),(16,20,4)\}
$$

Find a basis $\left\{f_{1}, f_{2}, f_{3}\right\}$ for F and ingegers d_{1}, d_{2}, d_{3} such that $d_{1}\left|d_{2}\right| d_{3}$ and $\left\{d_{1} f_{1}, d_{2} f_{2}, d_{3} f_{3}\right\}$ is a basis for N.
149. Let $A \in M_{8}(\mathbb{C})$. Explain how A can be used to define a $\mathbb{C}[X]$-module structure on \mathbb{C}^{8}.
150. Suppose that $X I-A \in M_{8}(\mathbb{C}[X])$ is equivalent to the matrix

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & (X-1) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & (X-1)(X-2)^{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & (X-1)^{2}(X-2)^{2}
\end{array}\right)
$$

(i) What is the Jordan normal form of A ?
(ii) What are the minimal and characteristic polynomials of the matrix A ?
151. Let M be an R-module. Give the definitions of what it means to say that M is torsion free and what it means to say that M is free.
152. Show that if R is an integral domain and M is free then M is torsion free.
153. Show that \mathbb{Q} considered as a \mathbb{Z}-module, is torsion free but not free.
154. State the structure theorem for finitely generated modules over a PID.
155. Show that if R is a PID then any finitely generated and torsion free R module is free.
156. Let A be an abelian group with presentation

$$
\langle a, b, c \mid 2 a+b=0,3 a+3 c=0\rangle
$$

Give the primary decomposition of A. What is the torsion free rank of A ?
157. Calculate the invariant factor matrix over $\mathbb{Q}[x]$ for the matrix

$$
\left(\begin{array}{ccc}
1 & x & -2 \\
x+4 & -3 & -6 \\
2 & -2 & x-3
\end{array}\right)
$$

158. Let V be an 8 dimensional complex vector space and $T: V \rightarrow V$ a linear transformation.
(i) Explain how T can be used to define a $\mathbb{C}[x]$-module structure on V.
(ii) Suppose that as a $\mathbb{C}[x]$ module

$$
V \cong \frac{\mathbb{C}[x]}{(x-2)^{2}(x+3)^{2}} \oplus \frac{\mathbb{C}[x]}{(x-2)(x+3)^{3}}
$$

What is the Jordan normal form for the transformation T ? What is the minimal polynomial of T ?
159. State the structure theorem for finitely generated modules over a PID.
160. List, up to isomorphism, all abelian groups of order 360 . Give the primary decomposition and the annihilator (as a \mathbb{Z}-module) of each group.
161. Let R be a commutative ring with identity. What does if mean to say that an R-module is free?
162. Show that every finitely generated R-module is isomorphic to a quotient of a free R-module.
163. Let F be the \mathbb{Z}-module $F=\mathbb{Z}^{4}$ and let N be the submodule of F generated by

$$
\{(1,1,1,1),(1,-1,1,-1),(1,3,1,3)\} .
$$

Give a direct sum of non-trivial cyclic \mathbb{Z}-modules that is isomorphic to F / N.
164. Let $A \in M_{7}(\mathbb{C})$ and suppose that the invariant factors of the matrix $x I-A \in M_{7}(\mathbb{C}[x])$ are $1,1,1,1, x, x(x-i), x(x-i)^{3}$.
(a) Give the corresponding decomposition of \mathbb{C}^{7} regarded as a $\mathbb{C}[x]$-module.
(b) Give the Jordan normal form of the matrix A.
(c) Give the minimal and characteristic polynomials of A.
(d) Is A diagonalizable?
165. List, up to isomorphism, all abelian groups of order 504. Give the primary decomposition and annihilator (as a \mathbb{Z}-module) of each group.
166. Let N be the submodules of the \mathbb{Z}-module $F=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ generated by

$$
\{(1,0,-1),(4,3,-1),(0,9,3),(3,12,3)\} .
$$

(i) Find a basis $\left\{b_{1}, b_{2}, b_{3}\right\}$ of F and $d_{1}, d_{2}, d_{3} \in \mathbb{Z}$ such that the non-zero elements of the set $\left\{d_{1} b_{1}, d_{2} b_{2}, d_{3} b_{3}\right\}$ form a basis for N (as a \mathbb{Z}-module).
(ii) Give a direct sum of non-trivial cyclic groups that is isomorphic to F / N.
167. Let $A \in M_{8}(\mathbb{C})$ be a matrix and suppose that the matrix $\left.\left.x I-A \in M_{8}(\mathbb{C}] x\right]\right)$ is equivalent to the matrix

$$
\operatorname{diag}\left(1,1,1,1,(x-1),(x-1),(x-1)(x-2),(x-1)(x-2)^{2}(x-3)\right)
$$

(a) Give the corresponding decomposition of \mathbb{C}^{8} regarded as a $\mathbb{C}[x]$-module.
(b) Give the Jordan Normal form of the matrix A.
(c) Give the minimal and characteristic polynomials of A.
168. Exactly one of the following is a field:

$$
\frac{\mathbb{Z} / 3 \mathbb{Z}[x]}{\left(x^{2}-2\right)} \quad \text { and } \quad \frac{\mathbb{Z} / 7 \mathbb{Z}[x]}{\left(x^{2}+3\right)}
$$

(i) Determine (with proof) which is a field and (with proof) which is not.
(ii) What is the order of the field F above?
(iii) Find a generator for the group F^{\times}of nonzero elements of the field (under multiplication).
169. State the structure theorem for finitely generated modules over a PID.
170. Let $\mathcal{S}=\{(1,0,0),(0,1,0),(0,0,1)\}$ be the standard basis of the free \mathbb{Z}-module \mathbb{Z}^{3} and let N be the submodule with basis

$$
\mathcal{B}=\{(2,2,2),(0,8,4)\} .
$$

Find a new basis $\left\{f_{1}, f_{2}, f_{3}\right\}$ for \mathbb{Z}^{3} and elements $d_{1}, d_{2}, d_{3} \in \mathbb{Z}$ such that the non-zero elements of the set $\left\{d_{1} f_{1}, d_{2} f_{2}, d_{3} f_{3}\right\}$ form a basis for N and $d_{1}\left|d_{2}\right| d_{3}$.
171. Find the invariant factor matrix over \mathbb{Z} that is equivalent to the matrix

$$
\left(\begin{array}{ccc}
-4 & -6 & 7 \\
2 & 2 & 4 \\
6 & 6 & 15
\end{array}\right)
$$

172. Give the primary decomposition and invariant factor decomposition of the \mathbb{Z}-module $\mathbb{Z} / 20 \mathbb{Z} \oplus$ $\mathbb{Z} / 40 \mathbb{Z} \oplus \mathbb{Z} / 100 \mathbb{Z}$.
173. Let V be an eight dimensional complex vector space and let $T: V \rightarrow V$ be a linear transformation. Explain how V can be regarded as a $\mathbb{C}[t]$-module.
174. Let V be an eight dimensional complex vector space and let $T: V \rightarrow V$ be a linear transformation. Suppose that

$$
V \cong \frac{\mathbb{C}[t]}{(t-2)(1-3)^{2}} \oplus \frac{\mathbb{C}[t]}{(t-2)(t-3)^{3}}, \quad \text { as a } \mathbb{C}[t] \text {-module. }
$$

(i) What is the Jordan normal form of T ?
(ii) What is the minimal polynomial of T ?
(iii) What is the dimension of the eigenspace corresponding to the eigenvalue 3 ?
175. Determine which of the following abelian groups are isomorphic:

$$
C_{12} \oplus C_{50} \oplus C_{30}, \quad C_{4} \oplus C_{12} \oplus C_{15} \oplus C_{25}, \quad C_{20} \oplus C_{30} \oplus C_{30}, \quad C_{6} \oplus C_{50} \oplus C_{60} .
$$

176. Consider the abelian group A with generators x, y, z subject to the defining relations $7 x+5 y+$ $2 z=0,3 x+3 y=0$ and $13 x+11 y+2 z=0$. Find a direct sum of cyclic groups which is isomorphic to A. Explain in sense your answer is unique.
177. Let M be a finitely generated torsion module over a PID R. Show that M is indecomposable if and only if $M=R x$ where $\operatorname{ann}_{R}(z)=\left(p^{e}\right)$ and p is a prime of R.
178. Llet T be a linear operator on the finite dimensional vector space V over \mathbb{C}. Suppose that the characteristic polynomial of T is $(t+2)^{2}(t-5)^{3}$. Determine all possible Jordan forms for a matrix of T. In each case find the minimal polynomial for T and the dimension of the space of eigenvectors.
179. State carefully the invariant factor theorem which describes the structure of finitely generated modules over a principal ideal domain.
180. Describe the primary decomposition of a finitely generated torsion module over a PID.
181. Determine which if the following abelian groups are isomorphic:

$$
C_{6} \oplus C_{50} \oplus C_{60}, \quad C_{20} \oplus C_{30} \oplus C_{30}, \quad C_{12} \oplus C_{25} \oplus C_{4} \oplus C_{15}, \quad C_{30} \oplus C_{50} \oplus C_{12}
$$

182. Let $R=\mathbb{Q}[x]$ and suppose that the torsion R-module M is a direct sum of four cyclic modules whose annihilators (order ideals) are $(x-1)^{3},\left(x^{2}+1\right)^{2},(x-1)\left(x^{2}+1\right)^{4}$ and $(x+2)\left(x^{2}+1\right)^{2}$. Determine the primary components and invariant factors of M.
183. Let $R=\mathbb{Q}[x]$ and suppose that the torsion R-module M is a direct sum of four cyclic modules whose annihilators (order ideals) are $(x-1)^{3},\left(x^{2}+1\right)^{2},(x-1)\left(x^{2}+1\right)^{4}$ and $(x+2)\left(x^{2}+1\right)^{2}$. If M is thought of as a vector space over \mathbb{Q} on which x acts as a linear transformation denoted A, determine the minimum and characteristic polynomials of A and the dimension of M over \mathbb{Q}.
184. Let $R=\mathbb{C}[x]$ and suppose that the torsion R-module M is a direct sum of four cyclic modules whose annihilators (order ideals) are $(x-1)^{3},\left(x^{2}+1\right)^{2},(x-1)\left(x^{2}+1\right)^{4}$ and $(x+2)\left(x^{2}+1\right)^{2}$. If M is thought of as a vector space over \mathbb{C} on which x acts as a linear transformation denoted A then is A diagonalizable?
185. Determine the invariant factors and the torsion free rank of the abelian group M generated by x, y, z subject to the relations

$$
2 x-4 y+2 z=0 \quad \text { and } \quad-2 x+10 y+4 z=0
$$

186. Let M be the abelian group generated by x, y, z subject to the relations

$$
2 x-4 y+2 z=0 \quad \text { and } \quad-2 x+10 y+4 z=0
$$

Express M as a direct sum of cyclic groups in a unique way.
187. Determine which of the following abelian groups are isomorphic:

$$
C_{6} \oplus C_{100} \oplus C_{15}, \quad C_{50} \oplus C_{6} \oplus C_{30}, \quad C_{30} \oplus C_{300}, \quad C_{60} \oplus C_{150}
$$

188. Suppose that the linear transformation T acts on the 8 dimension vector space \mathbb{C} over the complex numbers. Use T to make V into a $\mathbb{C}[t]$-module (where t is an indeterminate) in the usual way. Suppose that as a $\mathbb{C}[t]$-module

$$
V \cong \frac{\mathbb{C}[t]}{(t-5)^{3}(t+2)} \oplus \frac{\mathbb{C}[t]}{(t-5)^{2}(t+2)^{2}}
$$

(i) What is the Jordan normal form of T.
(ii) What are the eigenvalues of T and how many eigenvectors does T have (up to scalar multiples)?
(iii) What is the minimum polynomial of T ?
189. Determine the invariant factors and the torsion free rank of the abelian group M generated by x, y, z subject to the relations

$$
9 x+12 y+6 z=0 \quad \text { and } \quad 6 x+3 y-6 z=0
$$

190. Let M be the abelian group generated by x, y, z subject to the relations

$$
9 x+12 y+6 z=0 \quad \text { and } \quad 6 x+3 y-6 z=0
$$

Express M as a direct sum of cyclic groups in a unique way and find the primary components of M.
191. Determine the invariant factors of the abelian group generated by a, b, c, d subject to the relations $3 a-3 c=6 b+3 c-6 d=3 b+2 c-3 d=3 a+6 c+3 d=0$.
192. Give a list of all the different abelian groups of order 54.
193. Consider the linear transformation α acting on \mathbb{Z}^{3} given by

$$
\alpha\left(e_{1}\right)=e_{2}+e_{3}, \quad \alpha\left(e_{2}\right)=2 e_{2}, \quad \alpha\left(e_{3}\right)=e_{1}+2 e_{2}
$$

Show that the minimal polynomial and the characteristic polynomial for α are the same.
194. Consider the linear transformation α acting on \mathbb{F}_{3}^{3} given by

$$
\alpha\left(e_{1}\right)=e_{2}+e_{3}, \quad \alpha\left(e_{2}\right)=2 e_{2}, \quad \alpha\left(e_{3}\right)=e_{1}+2 e_{2}
$$

Determine the Jordan normal form of α.
195. Let $p \in \mathbb{Z}_{>0}$ be prime. Show that $\mathbb{Z} / p^{2} \mathbb{Z}$ is not isomorphic to the direct sum of two cyclic groups.
196. Let A be the abelain group generated by a, b, c with relations

$$
7 a+4 b+c=8 a+5 b+2 c=9 a+6 b+3 c=0
$$

Express this group as a direct sum of cyclic groups.
197. If an abelian group has torsion invariants (or equivalently invariant factors) $2,6,54$ determine its primary decomposition.
198. Determine all abelian groups of order 72.
199. Let $A=\left(\begin{array}{ccc}1 & 1 & -3 \\ 0 & -1 & 0 \\ 0 & -1 & 5\end{array}\right)$. Show that the minimal polynomial of A is $f(x)=(x-2)^{2}$ and the characteristic polynomial is $g(x)=(x-2)^{3}$.
200. Let $A=\left(\begin{array}{ccc}1 & 1 & -3 \\ 0 & -1 & 0 \\ 0 & -1 & 5\end{array}\right)$ and let $V=\mathbb{Q}^{3}$ be the corresponding $\mathbb{Q}[x]$-module. Prove that

$$
V \cong \frac{\mathbb{Q}[x]}{(x-2)} \oplus \frac{\mathbb{Q}[x]}{(x-2)^{3}} \oplus \frac{\mathbb{Q}[x]}{(x-2)^{2}}
$$

201. Use the structure theorem for modules to show that a torsion free finitely generated module over a PID is free.
202. Let V be the $\mathbb{Q}[x]$-module with presentation matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & -1 \\
0 & x & 0 & 0 \\
1 & 0 & 1-x & 1 \\
0 & 0 & 0 & x^{2}
\end{array}\right)
$$

Show that

$$
V \cong \frac{\mathbb{Q}[x]}{x \mathbb{Q}[x]} \oplus \frac{\mathbb{Q}[x]}{x^{3} \mathbb{Q}[x]}
$$

203. Show (without using the Structure Theorem) that $\mathbb{Z}_{p^{r}}$ is not a direct sum of two abelian groups when p is a prime and r is a positive integer.
204. Using the Structure theorem or otherwise show that a fintiely generate torsion-free abelian group is a free abelian group.
205. Determine the torsion-free rank and the torsion invariants of the abelian group given by generators a, b, c and relations

$$
7 a+4 b+c=8 a+5 b+2 c=9 a+6 b+3 c=0
$$

206. Determine, up to isomorphism, all abelian groups of order 1080.
207. Show that \mathbb{Q} is torsion-free but not free as a \mathbb{Z}-module.
208. Show that a finitely generated torsion free module over a Principal Ideal Domain R is a free R-module.
209. Deteremine the torsion free rank and the torsion invariants of the abelian group presented by generators a, b, c and relations

$$
7 a+4 b+c=8 a+5 b+2 c=9 a+6 b+3 c=0
$$

210. Determine, up to isomorphism, all abelian groups of order 360 .
