16.3 Problem Sheet: Fields

1. Let F be a field of characteristic zero and let K be a field extension of F. Suppose that $n \in \mathbb{Z}_{>0}$ is such that every $\alpha \in K$ is a root of a polynomial of degree at most n in $F[x]$. Prove that $[K: F] \leq n$.
2. Let $K=\mathbb{C}(t)$. Let $E=\mathbb{C}\left(t^{2}\right)$ and $F=\mathbb{C}\left(t^{2}-t\right)$.
(a) Find field automorphisms σ and τ of K such that σ fixes E, τ fixes F and such that $\sigma \tau$ is of infinite order.
(b) Prove that $E \cap F=\mathbb{C}$.
3. Let $K=\mathbb{C}(t)$. Let n be a positive integer and let $u=t^{n}+t^{-n}$. Define automorphisms σ and τ of K by $\sigma(t)=\zeta t$ and $\tau(t)=t^{-1}$, where $\zeta=e^{\frac{2 \pi i}{n}}$.
(a) Prove that $\mathbb{C}(u)$ is fixed by both σ and τ.
(b) Find the minimal polynomial for t over the field $\mathbb{C}(u)$.
(c) Prove that K is a Galois extension of $\mathbb{C}(u)$.
4. Let F be a field. Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ and $g(x)=x^{m}+b_{m-1} x^{m-1}+\cdots+$ $b_{1} x+b_{0}$ be two polynomials in $F[x]$.
(a) Prove that f and g are relatively prime if and only if there do not exist nonzero polynomials $p(x)$ and $q(x)$ in $F[x]$ with $p(x) f(x)=q(x) g(x)$ and $\operatorname{deg} p(x)<m, \operatorname{deg} q(x)<n$.
(b) Prove that f and g are relatively prime if and only if the determinant of the following matrix is nonzero.

$$
\left(\begin{array}{cccccccc}
1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
a_{n-1} & 1 & \ddots & \vdots & b_{m-1} & 1 & \ddots & \vdots \\
a_{n-2} & a_{n-1} & \ddots & 0 & b_{m-2} & b_{m-1} & \ddots & 0 \\
\vdots & \vdots & \ddots & 1 & \vdots & \vdots & \ddots & 1 \\
\vdots & \vdots & \ddots & a_{n-1} & \vdots & \vdots & \ddots & b_{m-1} \\
a_{0} & a_{1} & \ddots & \vdots & b_{0} & b_{1} & \ddots & \vdots \\
0 & a_{0} & \ddots & \vdots & 0 & b_{0} & \ddots & \vdots \\
\vdots & \vdots & \ddots & a_{1} & \vdots & \vdots & \ddots & b_{1} \\
0 & 0 & \cdots & a_{0} & 0 & 0 & \cdots & b_{0}
\end{array}\right)
$$

5. Determine the Galois group of the polynomial $x^{4}+4 x^{2}+2$ over \mathbb{Q}.
6. Show that the following polynomials are irreducible in $\mathbb{Q}[x]$:
(a) $x^{2}-12$
(b) $8 x^{3}+4399 x^{2}-9 x+2$
(c) $2 x^{10}-25 x^{3}+10 x^{2}-30$.
7. Determine all irreducible polynomials of degree ≤ 4 in $\mathbb{F}_{2}[x]$.
8. List all monic polynomials of degree ≤ 2 in $\mathbb{F}_{3}[x]$. Determine which of these are irreducible.
9. Let $f(x)=x^{3}-5$. Show that $f(x)$ does not factor into three linear polynomials with coefficients in $\mathbb{Q}[\sqrt[3]{5}]$.
10. (a) Find a degree four polynomial $f(x)$ in $\mathbb{Q}[x]$ which has $\sqrt{2}+\sqrt{3}$ as a root.
(b) Find the degree of the field extension $\mathbb{Q}[\sqrt{2}+\sqrt{3}]$ of \mathbb{Q}. (Possible Hint: Any factor of $f(x)$ in $\mathbb{Q}[x]$ is also a factor of $f(x)$ in $\mathbb{C}[x]$, and we can list all these factors)
11. Show that if F is a finite field of characteristic 2 , then the function $x \mapsto x^{2}$ is a bijection. Is the same true if we remove the assumption that F is finite?
12. Show that a finite field has order a power of a prime.
13. Show that there are infinitely many irreducible polynomials of any given positive degree in $\mathbb{Q}[x]$.
14. Let F be a field of characteristic p and let q be a power of p. Let $X=\left\{x \in F \mid x^{q}=x\right\}$. Prove that X is a subfield of F.
15. Let K / F be a field extension. Let $f(x) \in F[x]$ be a polynomial of degree n. Suppose it has n roots in K, called $\alpha_{1}, \ldots, \alpha_{n}$. The discriminant of f is defined to be

$$
D=\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

(a) If $n=2$, how does this relate to the high school discriminant of a quadratic?
(b) Prove that $D \in F$ if $n \leq 3$ (actually it's true for all n, feel free to try this if you want).
(d) Let $n=3, \zeta$ be a primitive cube root of 1 and $x=\alpha_{1}+\zeta \alpha_{2}+\zeta^{2} \alpha_{3}$. Show that you can write x^{3} in terms of the coefficients of f and \sqrt{D}.
(d) Use this to produce a cubic formula (or at least show a cubic formula exists).
16. Let α be a complex root of the irreducible polynomial $x^{3}-x+4$. Find the inverse of $\alpha^{2}+\alpha+1$ in $\mathbb{Q}[\alpha]$ explicitly, in the form $a+b \alpha+c \alpha^{2}$, with $a, b, c \in \mathbb{Q}$.
17. Let F be a field, and α an element that generates a field extension of F of degree 5 . Prove that α^{2} generates the same extension.
18. Let a be a root of the polynomial $x^{3}-x+1$. Determine the minimal polynomial for $a^{2}+1$ over \mathbb{Q}.
19. (a) Let $a, b, c, d \in \mathbb{C}$ with $a d-b c \neq 0$. Prove that there exists an automorphism σ of $\mathbb{C}(z)$ with $\sigma(z)=\frac{a z+b}{c z+d}$ (these are called Mobius transformations)
(b) Determine the relationship between composition of Mobius transformations and matrix multiplication.
(c) Show that the automorphisms $\sigma(t)=i t$ and $\tau(t)=t^{-1}$ of $\mathbb{C}(t)$ generate a group G that is isomorphic to the dihedral group D_{4}.
(d) Let $u=t^{4}+t^{-4}$. Show that u is fixed under H.
(e) What is $[\mathbb{C}(t): \mathbb{C}(u)]$?
20. Let p be a prime. Determine the number of monic irreducible polynomials of degree two in \mathbb{F}_{p}. In particular, show that this number is positive and deduce that there exists a field with p^{2} elements.
21. Let F be a field and let $a_{1}, a_{2}, \ldots, a_{n}$ be the roots of a polynomial $f \in F[x]$ of degree n. Prove that $\left[F\left[a_{1}, \ldots, a_{n}\right]: F\right] \leq n!$.
22. Let R be an integral domain that contains a field F as a subring and is finite dimensional when viewed as a vector space over F. Prove that R is a field.
23. Let p be a prime number and let q be a power of p. Let K be a field extension of \mathbb{F}_{p}. Let L be a subfield of K with q elements.
(a) Show that if $x \in L$ then $x^{q}=x$ (Think about the group of units of L).
(b) Show that

$$
L=\left\{x \in K \mid x^{q}=x\right\} .
$$

(Hint: the number of roots of a polynomial is at most the degree)
(c) Deduce that K has at exactly one subfield with q elements.
(d) Show that any two fields with q elements are isomorphic?
24. Let $K=\mathbb{Q}[\sqrt[p]{n}, \zeta]$ where n is a positive integer that is not a p-th power, p is a prime, and $\zeta=e^{\frac{2 \pi i}{p}}$.
(a) Find $[K: \mathbb{Q}]$ (Hint: What are the degrees of the intermediate field extensions?).
(b) Show that $\left|\operatorname{Aut}_{\mathbb{Q}}(K)\right| \leq p(p-1)$.
(c) Let $\alpha=\sqrt[p]{n}+\zeta$. Prove that $K=\mathbb{Q}[\alpha]$ (if it makes it simpler, assume n is large relative to $p)$.
(d) Write $K=E[\zeta]$ and $K=F[\sqrt[p]{n}$ for some appropriate subfields E and F. Deduce the existence of automorphisms σ_{i} and τ of K such that

$$
\sigma_{i}(\sqrt[p]{n})=\sqrt[p]{n}, \quad \sigma_{i}(\zeta)=\zeta^{i}
$$

and

$$
\tau(\sqrt[p]{n})=\zeta \sqrt[p]{n}, \quad \tau(\zeta)=\zeta
$$

(e) Show that the automorphism group of K is isomorphic to the group of invertible matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ where the entries are in \mathbb{F}_{p}.
25. Let E be a field. Let $\operatorname{Aut}(E)$ denote the group of all field isomorphisms $\varphi: E \rightarrow E$ with composition as multiplication. Let $H \subset \operatorname{Aut}(E)$ be a subgroup. Show that $E^{H}=\{e \in E \mid h e=$ e for all $h \in H\}$ is a subfield of E.
26. Let $F=\mathbb{C}(w)$. Let $f(x)=x^{4}-4 x^{2}+2-w$.
(a) Prove that $f(x)$ is irreducible in $F[x]$. [Hint: Gauss' Lemma]
(b) Let $K=F[x] /(f(x))$. Prove that K is not a splitting field of f. [Hint: It may be easier to identify $w=t^{4}+t^{-4}$ and identify F with the corresponding subfield of $\mathbb{C}(t)$, as here you can compute the roots of f explicitly]
27. Let K be a field. Let G be a finite group of automorphisms of K and let N be a normal subgroup of G. Let $L=K^{N}$ and $F=K^{G}$. Show how you can produce an injective homomorphism $G / N \hookrightarrow \operatorname{Aut}_{F}(L)$. Is this an isomorphism?
28. (a) Show that $\operatorname{Aut}(\mathbb{Q})$ is the trivial group.
(b) Show that $\operatorname{Aut}(\mathbb{R})$ is the trivial group.
29. Let $p_{n}=x^{n}+y^{n}+z^{n}$ (these are the power sum symmetric functions in x, y and z).
(a) Write p_{0}, p_{1} and p_{2} in terms of the elementary symmetric functions of x, y and z.
(b) Find a recurrence relation relating p_{n} to p_{n-1}, p_{n-2} and p_{n-3}.
(c) Can every symmetric polynomial in x, y and z be written as a polynomial in $p_{0}, p_{1}, p_{2}, p_{3}, \ldots$?
30. Let F be a field and $\delta \in F$ an element that is not a square in F (i.e., there does not exist $\alpha \in F$ such that $\alpha^{2}=\delta$). Show that

$$
K=\left\{\left.\left(\begin{array}{cc}
a & \delta b \\
b & a
\end{array}\right) \right\rvert\, a, b \in F\right\} \subset M_{2 \times 2}(F)
$$

is a field and that it is isomorphic to $F[\sqrt{\delta}]=F[x] /\left(x^{2}-\delta\right)$.
31. Let $f(x) \in \mathbb{F}_{p}[x]$. For any polynomial $g(x) \in F[x]$, denote $r(g(x))$ to be the remainder after dividing $g(x)$ by $f(x)$.
Suppose $f(x)=p_{1}(x) p_{2}(x) \cdots p_{k}(x)$ is the factorisation of f into irreducibles. Suppose the $p_{i}(x)$ are all monic and distinct. Let g be a polynomial whose degree is smaller than the degree of g. Prove the following are equivalent
(a) $r\left(g\left(x^{p}\right)\right)=g(x)$.
(b) $f(x)$ divides $\prod_{i=1}^{p}(g(x)-i)$
(c) For each i with $1 \leq i \leq k$, there exists s_{i} such that $p_{i}(x)$ divides $g(x)-s_{i}$.
32. Let $F \subseteq \mathbb{C}$ be a field and suppose that $f \in F[x]$ is an irreducible (monic) quadratic polynomial. Let the roots of f be $\alpha, \beta \in \mathbb{C}$. Show that
(a) $F(\alpha)=F(\alpha, \beta)$
(b) $|\operatorname{Gal}(F(\alpha) / F)|=2, F(\alpha)$ is a Galois extension of F, and the non-trivial element in $\operatorname{Gal}(F(\alpha) / F)$ permutes α and β.
33. (a) Show that if a and b are rational numbers with $(a+b \sqrt{2})^{2}=1+\sqrt{2}$, then $(a-b \sqrt{2})^{2}=1-\sqrt{2}$. Use this to show that $1+\sqrt{2}$ is not a square in $\mathbb{Q}[\sqrt{2}]$.
(b) Let $K=\mathbb{Q}[\sqrt{1+\sqrt{2}}]$. Find $[K: \mathbb{Q}]$.
(c) Show that K / \mathbb{Q} is not Galois. [Hint: If it were Galois, then the minimal polynomial of $\sqrt{1+\sqrt{2}}$ would have four roots in K. Find those roots. Are they real?] [Comment: $K / \mathbb{Q}[\sqrt{2}]$ is Galois and $\mathbb{Q}[\sqrt{2}] / \mathbb{Q}$ is Galois. This example shows that being Galois is not a transitive property of field extensions.]
34. The n-th cyclotomic polynomial is defined by

$$
\Phi_{n}(x)=\prod_{1 \leq k \leq n, \operatorname{gcd}(n, k)=1}\left(x-e^{2 \pi i k / n}\right) .
$$

A priori this lies in $\mathbb{C}[x]$ though we will prove a more precise result below. (Off topic aside: Although is is not experimentally clear, every integer appears as a coefficient of some cyclotomic polynomial.)
(a) If p is prime, show that $\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+\cdots+x+1$. Can you find a similar formula for Φ_{n} when n is a power of a prime?
(b) Prove that

$$
\prod_{d \mid n} \Phi_{d}(x)=x^{n}-1
$$

and use this to show by induction on n that $\Phi_{n}(x) \in \mathbb{Q}[x]$. (Actually it lies in $\mathbb{Z}[x]$ and we know how to prove that too)
(c) Factor $\Phi_{12}(x)$ into irreducibles in $\mathbb{R}[x]$.
(d) Prove that $\Phi_{12}(x)$ is irreducible in $\mathbb{Q}[x]$. (A more general fact is that $\Phi_{n}(x)$ is always irreducible in $\mathbb{Q}[x])$
(e) Show that the Galois group of $\Phi_{12}(x)$ over \mathbb{Q} is the Klein Four group.
(f) Let p be a prime number with $p \equiv 1(\bmod n)$. Prove that $\Phi_{n}(x)$ factors into linear factors in $\mathbb{F}_{p}[x]$. (Possible hint: From a previous tutorial, we know the multiplicative group of a finite field is cyclic)
35. (a) Let $G L_{n}\left(\mathbb{F}_{q}\right)$ be the group of invertible $n \times n$ matrices with entries in the field \mathbb{F}_{q} with q elements. Prove that

$$
\left|G L_{n}\left(\mathbb{F}_{q}\right)\right|=\prod_{i=1}^{n}\left(q^{n}-q^{i-1}\right)
$$

(b) Can you find a formula for $\left|S L_{n}\left(\mathbb{F}_{q}\right)\right|$? $\quad\left(S L_{n}\left(\mathbb{F}_{q}\right)\right.$ is the group of $n \times n$ matrices with determinant 1) [Hint: The determinant is a group homomorphism]
(c) Let q be a power of the prime p. Show that the subgroup of upper-triangular matrices with 1's along the diagonal is a Sylow-p-subgroup of both $G L_{n}\left(\mathbb{F}_{q}\right)$ and $S L_{n}\left(\mathbb{F}_{q}\right)$.
(d) Show that every finite group is isomorphic to a subgroup of $G L_{n}\left(\mathbb{F}_{q}\right)$ for some n. [Hint: permutation matrices] [Off topic aside: There exist infinite groups that are not subgroups of $G L_{n}(F)$ for any field F and any $\left.n\right]$
36. Let H be a subgroup of G. Let P be a Sylow- p-subgroup of G. (recall this means that $|P|$ is a power of p and $|G| /|P|$ is not divisible by p) Consider the action of H on G / P. Show that there exists an orbit whose size is not divisible by p.
(a) Show that every stabiliser in the H-action on G / P is conjugate to a subgroup of P, hence has order a power of p.
(b) Combine the previous results to show that H has a Sylow- p-subgroup, hence proving the first Sylow Theorem.
37. Let $F=\mathbb{Q}(\sqrt[4]{2}, i)$.
(a) Prove that F is a Galois field extension of \mathbb{Q}
(b) Compute $[F: \mathbb{Q}]$.
(c) Show that there exists $\tau \in \operatorname{Gal}_{\mathbb{Q}}(F)$ such that $\tau(\sqrt[4]{2})=i \sqrt[4]{2}$ and $\tau(i)=i$. (Hint: Any automorphism must send $\sqrt[4]{2}$ to a root of $x^{4}-2$ and i to a root of $x^{2}+1$. How many possibilities does this provide and what is the size of the Galois group?).
(d) Show that the Galois group $\operatorname{Gal}_{\mathbb{Q}}(F)$ is isomorphic to the dihedral group D_{4}.
(e) Find the intermediate fields between \mathbb{Q} and F. (have a look at $\mathrm{Q} 4(\mathrm{~b})$ if needed).
38. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible cubic with three complex roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Let $D=\left(\alpha_{1}-\right.$ $\left.\alpha_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{3}-\alpha_{1}\right)$. Let G be the Galois group of f, thought of as a subgroup of S_{3}.
(a) Show that if $\sigma \in G$ then

$$
\sigma(D)=\operatorname{sgn}(\sigma) D
$$

(Here sgn is the sign of a permutation).
(a) Show that G is a subgroup of the alternating group A_{3} if and only if $D \in \mathbb{Q}$.
(b) Generalise this to give a criterion for when a Galois group is a subgroup of A_{n} for any n.
39. Up to isomorphism, there are five transitive subgroups of S_{4}. They are the cyclic group C_{4}, the Klein four group $C_{2} \times C_{2}$, the dihedral group D_{4}, the alternating group A_{4} and the symmetric group S_{4}.
(a) Convince yourself you are aware of these groups.
(b) Let E / F be a degree four separable field extension. Is it always the case that there exists a field $F \leq G \leq E$ with $[G: F]=2$? Hint: Let K be the Galois closure of E (so if E is given by adjoining a root of a quartic polynomial $f(x)$, then K is the splitting field of f). Look at the list of five possibilities for $\operatorname{Gal}(K / F)$, each of which can occur. (Please assume that each of these can occur in order to solve this question, or prove it!)]
40. Let F be a field. Let G be the set of functions $f: F \rightarrow F$ of the form $f(x)=a x+b$ where $a, b \in F$ with $a \neq 0$.
(a) Show that G is a group with the group multiplication being composition of functions (sometimes this is called the $a x+b$ group).
(b) If F is a finite field with q elements, find $|G|$. (If $q=5$, this gives an explicit construction of a transitive subgroup of S_{5} with 20 elements).
(c) Let $f(x)=x^{5}-2$. Find the Galois group of f over \mathbb{Q}.
41. Let V be a vector space over a field F. Let G be a finite group which acts linearly on V (this means that $g(\lambda v)=\lambda(g v)$ and $g(v+w)=v+w$ for all $\lambda \in F, v, w \in V$, in addition to the axioms of a group axiom $1 v=v$ and $(g h) v=g(h v)$.)
(a) Suppose that $|G| \neq 0$ in F. Let $x \in V$. Prove that $g x=x$ for all $g \in G$ if and only if there exists $y \in V$ such that

$$
x=\frac{1}{|G|} \sum_{g \in G} g y .
$$

(b) Let $F=\mathbb{Q}$ and $V=\mathbb{Q}(\sqrt[4]{2}, i)$. Let s denote complex conjugation and r the field automorphism of V with $r(\sqrt[4]{2})=i \sqrt[4]{2}$ and $r(i)=i$. Use the previous formula with $y=\sqrt[4]{2}$ to come up with elements of V fixed by the order two subgroups $\langle r s\rangle$ and $\left\langle r^{3} s\right\rangle$.
(c) Find the minimal polynomials over \mathbb{Q} of the elements you found in the previous part.
42. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{4}-2$, including their automorphisms.
43. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{5}-1$, including their automorphisms.
44. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{3}-1$, including their automorphisms.
45. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{3}-7$, including their automorphisms.
46. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{4}-X^{2}-2$, including their automorphisms.
47. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{2}-2$, including their automorphisms.
48. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{2}-5 X+6$, including their automorphisms.
49. Analyze the poset of fields between \mathbb{F}_{2} and the splitting field of $X^{3}+X+1$, including their automorphisms.
50. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{4}-4 X^{2}-5$, including their automorphisms.
51. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{3}-56$, including their automorphisms.
52. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{2}-3$, including their automorphisms.
53. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{2}-2 X-2$, including their automorphisms.
54. Show that

$$
\mathbb{Q}(\sqrt{2}, \sqrt{3} \sqrt{5})
$$

is a Galois extension of \mathbb{Q} and analyze the poset of fields between \mathbb{Q} and the splitting field of $\mathbb{Q}(\sqrt{2}, \sqrt{3} \sqrt{5})$, including their automorphisms.
55. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{4}-1$, including their automorphisms.
56. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{3}-2$, including their automorphisms.
57. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^{4}+1$, including their automorphisms.
58. Show that the only continuous automorphisms of \mathbb{C} are the identity and complex conjugation.
59. Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be an automorphism of \mathbb{R}.
(a) Show that if $x>0$ then $\varphi(x)>0$.
(b) Show that if $x>y$ then $\varphi(x)>\varphi(y)$.
(c) Prove that $\operatorname{Aut}(\mathbb{R})$ is $\{\mathrm{id}\}$.
60. Show that $\operatorname{Aut}(\mathbb{Q})=\{\operatorname{id}\}$.
61. Let \mathbb{F} be a field, $f \in \mathbb{F}[X]$ and $\mathbb{E} \supseteq \mathbb{F}$ a splitting field for f. Let $g \in \mathbb{F}[x]$ be irreducible and such that g divides f. Let $a b \in \mathbb{E}$ be two roots of g. Show that there exists and automorphism of \mathbb{E} sending a to b.
62. Let $\mathbb{F} \subseteq \mathbb{C}$ be a field and suppose that $f \in \mathbb{F}[X]$ is an irreducible quadratic. Let the roots of f be $a, b \in \mathbb{C}$. Show that $\mathbb{F}(a)=\mathbb{F}(a, b)$ and $|\operatorname{Gal}(\mathbb{F}(a), \mathbb{F})|=2$ and the nontrivial element in $\operatorname{Gal}(\mathbb{F}(a) / \mathbb{F})$ interchanges a and b.
63. Let $\mathbb{E} \supseteq \mathbb{F}, f \in \mathbb{F}[X]$ and $\varphi \in \operatorname{Aut}(\mathbb{E})$ and \mathbb{F}-automorphism. Show that if $a \in \mathbb{E}$ is a root of f then $\varphi(a)$ is also a root of f.
64. Let $\mathbb{E} \supseteq \mathbb{F}, f \in \mathbb{F}[X]$ and $\varphi \in \operatorname{Aut}(\mathbb{E})$ and \mathbb{F}-automorphism. Show that $\varphi(a)$ permutes the roots of f.
65. Let \mathbb{E} be a field and let H be a subgroup of $\operatorname{Aut}(\mathbb{E})$. Show that \mathbb{E}^{H} is a subfield of \mathbb{E}.
66. Show that if E is a finite filed of order p^{n} and $d \in \mathbb{Z}_{>0}$ divides n then E has exactly one subfield of order p^{d}.
67. Let F be a finite filed with p^{n} elements. Write down a polynomial in $F[X]$ that has no roots in F. Conclude that no finite field is algebraically closed.
68. Show that if $f \in \mathbb{F}_{p}[X]$ and if u is a root of f in some extension of \mathbb{F}_{p} then u^{p} is also a root of f in that extension.
69. Let F be a field of size $q=p^{n}$. Show that every irreducible polynomial in $\mathbb{F}_{p}[X]$ of degree n is a factor of $X^{q}-X \in \mathbb{F}_{p}[X]$.
70. Show that if $\psi: E \rightarrow F$ is a (ring) homomorphism from one field to another and $\operatorname{ker}(\psi) \neq E$ then $\psi(1)=1$.
71. Let \mathbb{F}_{4} be the field containing 4 elements. Write out the addition and multiplication tables for \mathbb{F}_{4}.
72. Give an example of two infinite fields that have the same cardinality but are not isomorphic.
73. Show that if $p \in \mathbb{Z}_{\geq 0}$ is prime and $n \in \mathbb{Z}_{\geq 1}$ then there exists an irreducible polynomial of degree n.
74. Give an example of an infinite field whose characteristic is not zero.
75. Suppose that E and K are two extensions of F and let $a \in E$ and $b \in K$ be algebraic over F. Prove that $m_{a, F}=m_{b, F}$ if and only if there exists an isomorphism $\varphi: F(a) \rightarrow F(b)$ such that $\varphi(a)=b$ and $\left.\varphi\right|_{F}=\operatorname{id}_{F}$.
76. Let $E=\{a \in R \mid a$ is algebraic over $\mathbb{Q}\}$. Show that E is an algebraic extension of \mathbb{Q} but is not a finite extension of \mathbb{Q}.
77. Show that the set of algebraic numbers (over \mathbb{Q}) in \mathbb{R} forms a subfield of \mathbb{R}.
78. Let F be a field and let $k \in F$ such that k is not a square in F. Show that the subset of $M_{2 \times 2}(F)$ given by

$$
K=\left\{\left.\left(\begin{array}{cc}
a & k b \\
b & a
\end{array}\right) \right\rvert\, a, b \in F\right\}
$$

is a field and that it is isomorphic to $F(\sqrt{k})$.
79. Find the dimension and a basis for $\mathbb{R}(\sqrt{2}+i)$ over \mathbb{R}.
80. Find the dimension and a basis for $\mathbb{Q}(\sqrt{2}+i)$ over \mathbb{Q}.
81. Find the dimension and a basis for $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ over \mathbb{Q}.
82. Find the dimension and a basis for $\mathbb{Q}(\sqrt{3}, i)$ over \mathbb{Q}.
83. Show that $2^{\frac{1}{3}}$ is algebraic over \mathbb{Q} and find the minimal polynomial.
84. Show that $\sqrt{3}+\sqrt{2}$ is algebraic over \mathbb{Q} and find the minimal polynomial.
85. Show that $\frac{1}{2}(\sqrt{5}+1)$ is algebraic over \mathbb{Q} and find the minimal polynomial.
86. Show that $\frac{1}{2}(\sqrt{3}-1)$ is algebraic over \mathbb{Q} and find the minimal polynomial.
87. Find $m_{a, \mathbb{Q}}$ and $\operatorname{dim}_{\mathbb{Q}}(\mathbb{Q}(a))$ for $a=\sqrt{3-\sqrt{6}}$. Don't forget to prove that your answer for $m_{a, \mathbb{Q}}$ is an irreducible polynomial in $\mathbb{Q}[X]$.
88. Find $m_{a, \mathbb{Q}}$ and $\operatorname{dim}_{\mathbb{Q}}(\mathbb{Q}(a))$ for $a=\sqrt{\left(\frac{1}{3}\right)+\sqrt{7}}$. Don't forget to prove that your answer for $m_{a, \mathbb{Q}}$ is an irreducible polynomial in $\mathbb{Q}[X]$.
89. Find $m_{a, \mathbb{Q}}$ and $\operatorname{dim}_{\mathbb{Q}}(\mathbb{Q}(a))$ for $a=\sqrt{2}+i$. Don't forget to prove that your answer for $m_{a, \mathbb{Q}}$ is an irreducible polynomial in $\mathbb{Q}[X]$.
90. Show that every finite extension is algebraic.
91. Show that p is irreducible.
92. Let F be a field and $D: F[X] \rightarrow F[X]$ the map given by

$$
D\left(a_{0}+a_{1} X+\cdots+a_{n} X\right)=a_{1}+2 a_{2} X+\cdots n a_{n} X^{n-1}
$$

(a) (a)] Show that $D(f g)=D(f) g+f D(g)$.
(b) Suppose that $f \in F[X]$ is irreducible. Show that if $D(f) \neq 0$ then f has no multiple root in any extension field of F.
(c) Show that if F has characteristic 0 and $f \in F[X]$ is irreducible then f has no repeated roots.
93. Let $K=\mathbb{Q}\left[\sqrt[6]{2}, e^{\frac{\pi i}{3}}\right]$. Find $[K: \mathbb{Q}]$.
94. Let $K=\mathbb{Q}\left[\sqrt[6]{2}, e^{\frac{\pi i}{3}}\right]$. Prove that K is a Galois extension of \mathbb{Q}.
95. Let $K=\mathbb{Q}\left[\sqrt[6]{2}, e^{\frac{\pi i}{3}}\right]$. Show that there exists an element $\sigma \in \operatorname{Gal}_{\mathbb{Q}}(K)$ such that

$$
\sigma(\sqrt[6]{2})=e^{\frac{\pi i}{3}} \sqrt[6]{2} \quad \text { and } \quad \sigma\left(e^{\frac{\pi i}{3}}\right)=e^{\frac{\pi i}{3}}
$$

96. Let $K=\mathbb{Q}\left[\sqrt[6]{2}, e^{\frac{\pi i}{3}}\right]$. Let γ be such that $\mathbb{Q}[\gamma]$ is the inteermediate field between K and \mathbb{Q} that corresponds to the cyclic subgroup generated by σ under the main theorem of Galois theory. Is $\mathbb{Q}[\gamma]$ a Galois extension of \mathbb{Q} ?
97. Let $f=x(x-1)(x-2)+(x+1)(x+2)$. Determine whether or not $\mathbb{F}_{5}[x] / f \mathbb{F}_{5}[x]$ is a field.
98. For which $c \in \mathbb{F}_{5}$ does the equation $y^{2}-c=0$ have a solution in $\mathbb{F}_{5}[x] / f \mathbb{F}_{5}[x]$.
99. Let $f=x^{3}+x^{2}+x+2$.
(a) Prove that $\mathbb{F}_{3}[x] / f \mathbb{F}_{3}[x]$ is a field.
(b) For which $c \in \mathbb{F}_{3}$ does the equation $y^{2}-c$ have a solution in $\mathbb{F}_{3}[x] / f \mathbb{F}_{3}[x]$?
100. Let $K=\mathbb{C}(t)$. Define automorphisms σ and τ of K by $\sigma(t)=1-t$ and $\tau(t)=\frac{1}{t}$. Let

$$
w=\frac{\left(t^{2}-t+1\right)^{3}}{t^{2}(t-1)^{2}} \quad \text { and } \quad F=\mathbb{C}(w)
$$

(a) Prove that $\sigma(w)=w$ and $\tau(w)=w$.
(b) Find a polynomial $f \in F[x]$ of degree 6 which has t as a root. What are the other 5 roots of f in K ?
(c) Let G be the group generated by the automorphisms σ and τ. Prove that $F=K^{G}$. You may use without proof that $G \cong S_{3}$, the symmetric group on 3 letters.
(d) How many fields are there with $F \subseteq E \subseteq K$?
(e) How many of the fields from part (d) are Galois extensions of F ?
101. Recall the definition of the Frobenius homomorphism and explicitly describe its action on \mathbb{F}_{4} and \mathbb{F}_{8} element by element.
102. For each element of \mathbb{F}_{4} and \mathbb{F}_{8} determine its irreducible polynomial over \mathbb{F}_{2}.
103. What is $\sin \left(30^{\circ}\right)$?
104. The triple angle formula for $\sin \theta$ is $\sin (3 \theta)=3 \sin (\theta)-4 \sin (\theta)^{3}$. Use this formula to decide (with proof) whether it is possible to trisect a 30° angle using compass and straightedge.
105. Let $F \subseteq K$ be a field extension and let $a \in K$. Under which condition do we call a algebraic over F ? Under which condition do we call a transcendental over F ?
106. Let $F \subseteq K$ be a field extension and let $a \in K$. Assume that a is algebraic over F. What is the definition of the irreducible polynomial of a over F ?
107. Let $F \subseteq K$ be a field extension and let $a \in K$. Assume that F and K are finite fields. Determine (with proof) whether a is algebraic or transcendental.

108 . What is the dimension of \mathbb{C} over \mathbb{Q} ?
109. Let K be a field. What is the definition of the characteristic of K ?
110. Let $F \subseteq K$ be a field extension. Prove that $\operatorname{char}(F)=\operatorname{char}(K)$.
111. Prove that finite fields have prime power order.
112. Recall the construction of the field $E=\mathbb{Q}(\sqrt[4]{2})$.
113. Let F be the splitting field of $x^{4}-2$ over \mathbb{Q}. Decide whether $E=\mathbb{Q}(\sqrt[4]{2})$ is equal to F.
114. Let F be the splitting field of $x^{4}-2$ over \mathbb{Q}. Identify the automorphism group of F over \mathbb{Q}.
115. State the four equivalent definitions of a Galois extension and prove that they are equivalent.
116. Let F be the splitting field of $x^{4}-2$ over \mathbb{Q}. Prove that F is a Galois extension of \mathbb{Q}.
117. Let F be the splitting field of $x^{4}-2$ over \mathbb{Q}. Write down the Galois correspondence, including automorphism groups, for F over \mathbb{Q}.
118. Let $F \subseteq K$ be a Galois extension. How exactly does the Galois coresspondence relate intemediate field extensions with subgroups of the Galois group?
119. Let $\zeta_{n}=e^{2 \pi i / n} \in \mathbb{C}$. Find the irreducible polynomial of ζ_{6} over \mathbb{Q}.
120. Let $\zeta_{n}=e^{2 \pi i / n} \in \mathbb{C}$. Find the irreducible polynomial of ζ_{9} over \mathbb{Q}.
121. Let $\zeta_{n}=e^{2 \pi i / n} \in \mathbb{C}$. Find the irreducible polynomial of ζ_{6} over $\mathbb{Q}\left(\zeta_{3}\right)$.
122. Let $\zeta_{n}=e^{2 \pi i / n} \in \mathbb{C}$. Find the irreducible polynomial of ζ_{9} over $\mathbb{Q}\left(\zeta_{3}\right)$.
123. Let E and F be fields with $E \supseteq F$ and let $a \in E$ such that $\operatorname{deg}(a, F)=7$. Show that $F(a)=F\left(a^{3}\right)$.
124. Let $E \supseteq \mathbb{F}_{3}$ be an extension and let $f=x^{2}+1 \in \mathbb{F}_{3}[x]$.
(a) Let $a \in E$ be a root of F. Find a basis \mathcal{B} for the extension $\mathbb{F}_{3}(a) \supseteq \mathbb{F}_{3}$ considered as a vector space over \mathbb{F}_{3}. What is the cardinatlity of $\mathbb{F}_{3}(a)$?
(b) Using your result from (a) write down the elements of the field \mathbb{F}_{9} (in terms of the basis \mathcal{B}.
(c) Find a generator for the group $\mathbb{F}_{9}(a)^{\times}$.
125. Let $f=x^{4}-4 x^{2}+2 \in \mathbb{Q}[x]$ and let E be the splitting field of f over \mathbb{Q}.
(a) State the fundamental Theorem of Galois theory.
(b) Show that $[E: \mathbb{Q}]=4$.
(c) Find the Galois group $\operatorname{Gal}(E / \mathbb{Q})$.
(d) Describe explicitly the intermediate fields $\mathbb{Q} \subseteq L \subseteq E$ and the Galois correspondence between the set of subgroups of $\operatorname{Gal}(E / \mathbb{Q})$ and the set of intermediate fields.
(e) Specify β such that $E=\mathbb{Q}(\beta)$.
126. Find a basis of $\mathbb{Q}\left(i, 2^{1 / 3}\right)$ as a vector space over \mathbb{Q}.
127. Let $f=X^{4}+X^{2}+1 \in \mathbb{F}_{2}[X]$. Give an explicit description of a field E that contains \mathbb{F}_{2} and an element $a \in E$ that is a root of f.
128. Let $g \in \mathbb{Q}[X]$ be irreducible and let $n=\operatorname{deg}(g)$. Let $a \in \mathbb{C}$ be a root of g. Show that there are exactly n injective ring homomorphisms $\mathbb{Q}(a) \rightarrow \mathbb{C}$.
129. Let $p, n \in \mathbb{Z}_{>0}$ with p prime. Given that there exists a field of size p^{n} show that there is an irreducible polynomial of degree n in $\mathbb{F}_{p}[X]$.
130. Let F be a.finite field. Show that F is not algebraically closed.
131. Let E be a finite field and let F_{1} and F_{2} be subfields of E. Show that if $\left|F_{1}\right|=\left|F_{2}\right|$ then $F_{1}=F_{2}$.
132. Let E and F be fields with $E \supseteq F$. Define the Galois group of the extension.
133. State the fundamental theorem of Galois theory.
134. Let F be a field and let $E \supseteq F$ be an extension with $[E: F]=2$. Prove that E is a Galois extension of F.
135. Give an example of a finite extension E of \mathbb{Q} that is not Galois.
136. Let $f=x^{4}+1 \in \mathbb{Q}[X]$ and let $E \subseteq \mathbb{C}$ be the splitting field of f over \mathbb{Q} and let $F=\mathbb{Q}(i)$.
(i) Show that $E \supseteq F$.
(ii) Find $E: F]$.
(iii) Find the Galois group $G=G(E / F)$.
(iv) List all subfields of E that contain F and for each give the corresponding subgroup of G.
137. Let $f=x^{4}+1 \in \mathbb{Q}[X]$ and let $E \subseteq \mathbb{C}$ be the splitting field of f over \mathbb{Q} and let $F=\mathbb{Q}(i)$.
(i) Show that complex conjugation induces a \mathbb{Q}-automorphism of E.
(ii) Denote by $\tau \in G(E / \mathbb{Q})$ the autormorphism from (i). Show that the subgroup of $G(E / Q)$ generated by τ is not normal in $G(E / Q)$.
138. Let $p \in \mathbb{Z}_{>0}$ be prime, let $n \in \mathbb{Z}_{>0}$ and let \mathbb{F} be a finite field of size p^{n}.
(a) Show that the map $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ given by $\varphi(x)=x^{p}$ is an isomorphism.
(b) Show that φ has order n.
(c) Show that every automorphism of \mathbb{F} is a power of φ.
139. Define what it means to say that an element $a \in \mathbb{E} \supseteq \mathbb{F}$ is algebraic over \mathbb{F}.
140. Determine the irreducible polynomial $\operatorname{irr}(a, \mathbb{F})$ for $a=\sqrt{3}+\sqrt{5}$, where $\mathbb{F}=\mathbb{Q}$.
141. Determine the irreducible polynomial $\operatorname{irr}(a, \mathbb{F})$ for $a=\sqrt{3}+\sqrt{5}$, where $\mathbb{F}=\mathbb{Q}(\sqrt{15})$.
142. Let R be an integral domain and let $\mathbb{F} \subseteq R$ be a subfield of R. Show that if R is finite dimension as a vector space over \mathbb{F} then R is a field.
143. Let $\zeta=e^{2 \pi i / 7}$.
(a) What is the irreducible polynomial $f=\operatorname{irr}(\zeta, \mathbb{Q})$ of ζ over \mathbb{Q} ?
(b) Show that $\mathbb{E}=\mathbb{Q}(\zeta)$ is the splitting field of f over \mathbb{Q}.
(c) Show that the Galois group $\operatorname{Gal}(E / \mathbb{Q})$ is cyclic.
(d) List all intermediate fields \mathbb{F} with $\mathbb{Q} \subseteq \mathbb{F} \subseteq \mathbb{Q}(\zeta)$ and for each give the group $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$.
144. Let $\mathbb{K}=\mathbb{Q}(\omega, \sqrt{5})$, where $\omega=e^{2 \pi i / 3}$.
(a) Find a basis for \mathbb{K} over \mathbb{Q}.
(b) Show that \mathbb{K} is a Gaois extension of \mathbb{Q} and describe the Galois group $G=\operatorname{Gal}(\mathbb{K} / \mathbb{Q})$.
(c) Let $\beta=\omega+\sqrt{5} \in \mathbb{K}$. Compute the orbit of β under the action of G on K.
(d) Use your answer to part (c) to write down $\operatorname{irr}(\beta, \mathbb{Q})$, the irreducible polynomial of β over \mathbb{Q}.
145. Let \mathbb{F} be a field and $\mathbb{E} \supseteq \mathbb{F}$ an extension field. Let φ be an automorphism of \mathbb{E} satsifying $\varphi(x)=x$ for all $x \in \mathbb{F}$. Show that if $a \in \mathbb{E}$ is a root of $f \in \mathbb{F}[X]$ then $\varphi(a)$ is a root of f.
146. Let $f \in \mathbb{Q}[X]$ be irreducible with $\operatorname{deg}(f)=3$ and let $\mathbb{E} \subseteq \mathbb{C}$ be the splitting field of f.
(i) Show that the Galois group $G(\mathbb{E} / Q)$ is isomorhpic to S_{3} or C_{3}.
(ii) Show that if f has a root that is not real then $G(\mathbb{E} / \mathbb{Q}) \cong S_{3}$.
147. State the Fundamental theorem of Galois theory.
148. Let $f=X^{7}-1 \in \mathbb{Q}[X]$ and let $\mathbb{E} \subseteq \mathbb{C}$ be the splitting field of f.
(i) Find the Galois group G of \mathbb{E}.
(ii) List all subfields of \mathbb{E} and for each give the corresponding subgroup of G.
(iii) For each subfield of \mathbb{E} give a primitive element.
(iv) Which subfields of \mathbb{E} are Galois extensions of \mathbb{Q} ?
149. Define the degree of a field extension $\mathbb{E} \supseteq \mathbb{F}$ and determine the degree of $\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q}.
150. Let L be a finite extension of a field K and let $f \in K[x]$ be an irreducible polynomial over K of degree at least 2. Show that if $[L: K]$ and $\operatorname{deg}(f)$ are coprime then f has no root in L.
151. Explain why it is not possible to construct (with straight-edge and compass) a line segment whose length is $2^{1 / 3}$.
152. Let F be a field. Define the term splitting field of a polynomial $f \in F[x]$.
153. Let F be a field. Let $f \in F[x]$. Show that a splitting field of f exists.
154. Show that $\mathbb{Q}\left(5^{1 / 3}\right)$ is not the splitting field of any polynomial over \mathbb{Q}.
155. State the main theorem of Galois theory.
156. Let $E=\mathbb{Q}\left(2^{1 / 3}, e^{2 \pi i / 3}\right)$.
(i) Show that E is a Galois extension of \mathbb{Q}.
(ii) List all intermediate fields lying between \mathbb{Q} and E.
(iii) Which of the intermediate fields are Galois extensions of \mathbb{Q} ?
157. Let E and F be fields with F a subfield of E. What does it mean to say that $a \in E$ is algebraic over F ?
158. Let E and F be fields with F a subfield of E. Let $a \in E$ be algebraic over F. Denote by $F(a)$ the smallest subfield of E that contains F and q. Prove that $[F(a): F]=\operatorname{deg}(a, F)$.
159. Let E and F be fields with F a subfield of E. Let $a \in E$ be algebraic over F. Denote by $F[a]$ the smallest subring of E that contains both F and a. Prove that $F(a)=F[a]$.
160. Show that $X^{2}-3$ and $X^{2}-2 X-2$ have the same splitting field K over \mathbb{Q}.
161. Let K be the splitting field of $X^{2}-3$ over \mathbb{Q}. Find $[K: \mathbb{Q}]$.
162. Let $F=\mathbb{Z} / 3 \mathbb{Z}$ be the field with three elements and let $f=X^{3}-X+1$.
(i) Show that f is irreducible over F.
(ii) How many elements are there in $E=\mathbb{F}[X] /(f)$?
(iii) Determine the inverse of the element $a=X=(f) \in E$.
(iv) Show that $Y^{3}-Y+1$ splits completely into linear factors in $E[Y]$ and find these factors.
163. State the main theorem of Galois theory.
164. Let K be the splitting field of the polynomial $X^{5}-1 \in \mathbb{Q}[X]$.
(i) Determine the Galois group $G(K / \mathbb{Q})$.
(ii) Give the correspondence between subfields of K and subgroups of $G(K / \mathbb{Q})$.
165. Let F be a field and let $f(x) \in F[x]$ be a nonconstant polynomial. Show that there is an extension field K of F in which $f(x)$ has a root.
166. Find a basis for $\mathbb{Q}(i, \sqrt{5})$ as a vector space over \mathbb{Q}.
167. Define what it means to say that an element $a \in \mathbb{C}$ is algebraic over \mathbb{Q}.
168. Find the minimal polynomial over \mathbb{Q} of $(i \sqrt{3}-1) / 2$.
169. Suppose that $a \in \mathbb{C}$ is algebraic over \mathbb{Q} and let $n=\operatorname{deg}(a, \mathbb{Q})$. Show that there are exactly n injective field homomorphisms $\mathbb{Q}(q) \rightarrow \mathbb{C}$.
170. Let K be the splitting field of the polynomial $x^{3}-11 \in \mathbb{Q}[x]$. Determine the Galois group $G(K / \mathbb{Q})$.
171. Let K be the splitting field of the polynomial $x^{3}-11 \in \mathbb{Q}[x]$. Give the correspondence between subfields of K and subgroups of $G(K / \mathbb{Q})$.
172. Let K be the splitting field of the polynomial $x^{3}-11 \in \mathbb{Q}[x]$. Which of the subfields are Galois extensions of \mathbb{Q} ?
173. Let F be a finite field of characteristic p. Show that there exists $r \in \mathbb{Z}_{>0}$ such that the number of elements in F is p^{r}.
174. Let $E=\mathbb{Q}(\sqrt{2}, \sqrt{5})$.
(i) Calculate $[E: \mathbb{Q}]$.
(ii) Find an element $a \in E$ for which $E=\mathbb{Q}(a)$.
175. Suppose that $a \in \mathbb{R}$ is a constructible number. What can be said about the degree of a over \mathbb{Q}.
176. Let $r \in R$ be a root of the polynomial $x^{3}+3 x+1$. Explain why it is not possible to construct, with straight-edge and compass, a circle of radius r.
177. Show that the set of real numbers that are algebraic over \mathbb{Q} is a subfield of \mathbb{R}.
178. Find the Galois group of the extension $K=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{6})$. Explain why it is a Galois extension and list the correspondence between subgroups of $G(K / Q)$ and subfields $Q \subseteq L \subseteq K$.
179. Let K be the splitting field of $f(x)=x^{3}-2$ in $\mathbb{Q}[x]$.
(i) Calculate $[K: \mathbb{Q}]$.
(ii) Find a basis for K as a Q-vector space.
(iii) Identify the Galois group $G(K / Q)$ and identify it.
(iv) Write down a field L such that $Q \subseteq L \subseteq K$ and L is not a Galois extension of \mathbb{Q}.
180. Suppose that $a \in \mathbb{R}$ is a constructible number. What can be said about the dimension of $\mathbb{Q}(a)$ as a vector space over \mathbb{Q} ?
181. Is it possible to construct a regular 9-gon with straight-edge and compass? Explain. What about a regular 6-gon?
182. Find the Galois groups of $K=\mathbb{Q}(\sqrt{2}, \sqrt{5})$ over \mathbb{Q} and list the correspondence between subgroups of $G(K / \mathbb{Q})$ and subfields $L \subseteq K$.
183. Find the Galois groups of $K=\mathbb{Q}\left(e^{2 \pi i / 3}\right)$ over \mathbb{Q} and list the correspondence between subgroups of $G(K / \mathbb{Q})$ and subfields $L \subseteq K$.
184. Prove that there is no proper subfield of $\mathbb{Q}\left(e^{2 \pi i / 3}\right)$ other than \mathbb{Q}.
185. Let K be the splitting field of the polynomial $f(x)=x^{4}-3$.
(a) Calculate $[K: \mathbb{Q}]$.
(b) Find a basis \mathcal{B} for K as a \mathbb{Q}-vector space.
(c) Give the size of the Galois group $G(K / Q)$ and identify it.
(d) Write down a field L such that $\mathbb{Q} \subseteq L \subseteq K$ and L is not a Galois extension of \mathbb{Q}.
186. Let $a \in \mathbb{R}$ be a constructible number. What can be said about the degree of the extension $\mathbb{Q}(a)$ of \mathbb{Q} ?
187. Explain why it is not possible to construct with straight-edge and compass a line segment whose length is that of an edge of a cube of volume 5 .
188. Let K be the splitting field of the polynomial $x^{3}-7 \in \mathbb{Q}[x]$. Find the Galois group of K as an extension of \mathbb{Q}.
189. Let K be the splitting field of the polynomial $x^{3}-7 \in \mathbb{Q}[x]$. Exhibit an intermediate subfield $L, \mathbb{Q} \subseteq L \subseteq K$ such that L is not a Galois extension of \mathbb{Q}.
190. Let $K=\mathbb{Q}(\omega, \sqrt{5})$ where $\omega=e^{2 \pi i / 3}$. Find a basis of K over \mathbb{Q}.
191. Let $K=\mathbb{Q}(\omega, \sqrt{5})$ where $\omega=e^{2 \pi i / 3}$. Show that K is a Galois extension of \mathbb{Q} and describe the Galois group $G=G(K / \mathbb{Q})$.
192. Let $\beta=\omega+\sqrt{5} \in K$. Compute the orbit of β under the action of G on K.
193. If a number $a \in \mathbb{R}$ is constructible what can be said about the degree of the extension $\mathbb{Q}(\alpha)$ of \mathbb{Q} ?
194. Is π constrictible?
195. Explain why it is not possible to construct with ruler and compass a line segment whose length is the length of an edge of a cube of volume 2 .
196. Find the Galois group G of the splitting field K of $x^{4}-4 x^{2}-5$ as an extension of \mathbb{Q}. Explicitly write down the correspondence between the subgroups of G and the intermediate subfields of K.
197. Let $K=\mathbb{Q}(\omega, \sqrt[3]{7})$, where $\omega=e^{2 \pi i / 3}$. Show that K / \mathbb{Q} is a Galois extension of \mathbb{Q} and describe the Galois group $G=G(K / \mathbb{Q})$.
198. Let $K=\mathbb{Q}(\omega, \sqrt[3]{7})$, where $\omega=e^{2 \pi i / 3}$. Find the subgroup of the Galois group $G=G(K / \mathbb{Q})$ corresponding to the intermediate field $L=\mathbb{Q}(\sqrt[3]{7})$ under the Galois correspondence and show that L / \mathbb{Q} is not a Galois extension.
199. Let $K=\mathbb{Q}(\omega, \sqrt[3]{7})$, where $\omega=e^{2 \pi i / 3}$. Find a basis for K as a vector space over \mathbb{Q}.
200. Given that π is a transcendental number, explain why it is not possible to contruct (by ruler and compass) a square whose area is the same as the unit circle.
201. Explain why it is not possible to construct (by ruler and compass) a line segment whose length is the length of a side of a cube of volume 2 .
202. Find the Galois group G of the splitting field K of $x^{4}-x^{2}-2$ as an extension of \mathbb{Q}. Explicitly write down the correspondence between the subgroups of G and the intermediate subfields of K.
203. Let $K=\mathbb{Q}(\omega, \sqrt[3]{5})$, where $\omega=e^{2 \pi i / 3}$.
(i) Find a basis of K as a vector space over \mathbb{Q}.
(ii) Show that K / \mathbb{Q} is a Galois extension of \mathbb{Q} and describe the Galois group $G=G(K / \mathbb{Q})$.
(iii) Find the subgroup of G corresponding to the intermediate field $L=\mathbb{Q}(\sqrt[3]{5})$ under the Galois correspondence and show that L / \mathbb{Q} is not a Galois extension.
204. If a number $\alpha \in \mathbb{R}$ is constructible what can be said about the degree of the extension $\mathbb{Q}(\alpha)$ of \mathbb{Q} ?
205. Explain why it is not possible to construct with ruler and compass a line segment whose length is the length of a side of a cube with volume 2 .
206. Find the Galois group G of the splitting field K of $x^{3}-5$ as an extension of \mathbb{Q}. Explicitly write down the correspondence between the subgroups of G and the intermediate subfields of K. Exhibit an intermediate subfield L of K such that L / \mathbb{Q} is not a Galois extension.
207. Let $K=\mathbb{Q}(\omega, \sqrt{7})$, where $\omega=e^{2 \pi i / 3}$. Let $\beta=\omega+\sqrt{7}$ which is an element of K.
(i) Find a basis for K over \mathbb{Q}.
(ii) Show that K / \mathbb{Q} is a Galois extension of \mathbb{Q} and describe the Galois group $G=G(K / \mathbb{Q})$.
(iii) Compute the orbit of β under the action of G.
(iv) What is the degree of the irreducible polynomial of β ?
(v) Explain why your answer to (iv) shows that β is a primitive element for K / \mathbb{Q}.
208. Let $K=\mathbb{Q}(\sqrt{2-\sqrt{3}})$.
(a) Find the degree of K over \mathbb{Q}.
(b) Show that K is a splitting field of the minimal polynomial of $\sqrt{2-\sqrt{3}}$ over \mathbb{Q}.
209. Show that $\mathbb{Q}\left[2^{1 / 4}\right]$ is not the splitting field of any polynomal over \mathbb{Q}.
210. Let $i=\sqrt{-1}$. Show that $\mathbb{Q}\left[2^{1 / 4}, i\right]$ is the splitting field of a polynomial over \mathbb{Q}.
211. Let E be the smallest field extension of \mathbb{Q} containing $\omega=e^{2 \pi i / 5}$.
(a) Find a basis for E over \mathbb{Q}.
(b) Show that E is the splitting field of an irreducible polynomial over \mathbb{Q}.
(c) Find the Galois group of E / \mathbb{Q}.
(d) Show that there is only one subfield of E containing \mathbb{Q} which is different from E and \mathbb{Q}.
212. Let $f(x)$ be the minimal polynomial of $\sqrt{-2}+\sqrt{3}$ over \mathbb{Q}.
(a) Determine $f(x)$.
(b) Find the splitting field K of $f(x)$ and determine the Galois group of K over \mathbb{Q}.
213. (a) Show that the polynomial $f(x)=x^{3}+x^{2}+1$ is irreducible in $\mathbb{F}_{2}[x]$.
(b) Let η denote a root of $f(x)$. Determine the number of elements and the degree of $\mathbb{F}_{2}(\eta)$ over \mathbb{F}_{2}.
(c) Show that η^{2} and $\eta^{2}+\eta+1$ are roots of f.
(d) Show $\mathbb{F}_{2}(\eta)$ is the splitting field of f.
(e) Prove that the only proper subfield of $\mathbb{F}_{2}(\eta)$ is \mathbb{F}_{2}.
214. Find the minimal polynomial of $(\sqrt{2}+\sqrt{3})$ over \mathbb{Q}.
215. Determine the degree of the field extension $\mathbb{Q}\left(\sqrt{5}, 2^{1 / 3}\right)$ over \mathbb{Q}.
216. Is it possible to construct by ruler and compass an angle of $\pi / 9$?
217. Define the degree of a field extension and determine the degree of $\mathbb{Q}(\sqrt{5}, \sqrt{7})$ over \mathbb{Q}.
218. Is it possible to trisect an angle of $3 t$ degrees if $\cos (3 t)=\frac{1}{3}$?

