16.3 Problem Sheet: Fields

- 1. Let F be a field of characteristic zero and let K be a field extension of F. Suppose that $n \in \mathbb{Z}_{>0}$ is such that every $\alpha \in K$ is a root of a polynomial of degree at most n in F[x]. Prove that $[K:F] \leq n$.
- 2. Let $K = \mathbb{C}(t)$. Let $E = \mathbb{C}(t^2)$ and $F = \mathbb{C}(t^2 t)$.
 - (a) Find field automorphisms σ and τ of K such that σ fixes E, τ fixes F and such that $\sigma\tau$ is of infinite order.
 - (b) Prove that $E \cap F = \mathbb{C}$.
- 3. Let $K = \mathbb{C}(t)$. Let *n* be a positive integer and let $u = t^n + t^{-n}$. Define automorphisms σ and τ of *K* by $\sigma(t) = \zeta t$ and $\tau(t) = t^{-1}$, where $\zeta = e^{\frac{2\pi i}{n}}$.
 - (a) Prove that $\mathbb{C}(u)$ is fixed by both σ and τ .
 - (b) Find the minimal polynomial for t over the field $\mathbb{C}(u)$.
 - (c) Prove that K is a Galois extension of $\mathbb{C}(u)$.
- 4. Let F be a field. Let $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$ and $g(x) = x^m + b_{m-1}x^{m-1} + \dots + b_1x + b_0$ be two polynomials in F[x].
 - (a) Prove that f and g are relatively prime if and only if there do not exist nonzero polynomials p(x) and q(x) in F[x] with p(x)f(x) = q(x)g(x) and $\deg p(x) < m$, $\deg q(x) < n$.
 - (b) Prove that f and g are relatively prime if and only if the determinant of the following matrix is nonzero.

$\begin{pmatrix} 1 \end{pmatrix}$	0		0	1	0		0
a_{n-1}	1	·.	÷	b_{m-1}	1	·	÷
a_{n-2}	a_{n-1}	·.	0	b_{m-2}	b_{m-1}	·	0
÷	:	·	1	:	÷	·.	1
÷	:	·	a_{n-1}	:	÷	۰.	b_{m-1}
a_0	a_1	·	:	b_0	b_1	·.	:
0	a_0	·	:	0	b_0	·	:
:	÷	·.	a_1	:	÷	·	b_1
0	0	• • •	a_0	0	0	• • •	b_0

- 5. Determine the Galois group of the polynomial $x^4 + 4x^2 + 2$ over \mathbb{Q} .
- 6. Show that the following polynomials are irreducible in $\mathbb{Q}[x]$:
 - (a) $x^2 12$
 - (b) $8x^3 + 4399x^2 9x + 2$
 - (c) $2x^{10} 25x^3 + 10x^2 30$.
- 7. Determine all irreducible polynomials of degree ≤ 4 in $\mathbb{F}_2[x]$.

- 8. List all monic polynomials of degree ≤ 2 in $\mathbb{F}_3[x]$. Determine which of these are irreducible.
- 9. Let $f(x) = x^3 5$. Show that f(x) does not factor into three linear polynomials with coefficients in $\mathbb{Q}[\sqrt[3]{5}]$.
- 10. (a) Find a degree four polynomial f(x) in $\mathbb{Q}[x]$ which has $\sqrt{2} + \sqrt{3}$ as a root.
 - (b) Find the degree of the field extension $\mathbb{Q}[\sqrt{2} + \sqrt{3}]$ of \mathbb{Q} . (Possible Hint: Any factor of f(x) in $\mathbb{Q}[x]$ is also a factor of f(x) in $\mathbb{C}[x]$, and we can list all these factors)
- 11. Show that if F is a finite field of characteristic 2, then the function $x \mapsto x^2$ is a bijection. Is the same true if we remove the assumption that F is finite?
- 12. Show that a finite field has order a power of a prime.
- 13. Show that there are infinitely many irreducible polynomials of any given positive degree in $\mathbb{Q}[x]$.
- 14. Let F be a field of characteristic p and let q be a power of p. Let $X = \{x \in F \mid x^q = x\}$. Prove that X is a subfield of F.
- 15. Let K/F be a field extension. Let $f(x) \in F[x]$ be a polynomial of degree n. Suppose it has n roots in K, called $\alpha_1, \ldots, \alpha_n$. The discriminant of f is defined to be

$$D = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2.$$

- (a) If n = 2, how does this relate to the high school discriminant of a quadratic?
- (b) Prove that $D \in F$ if $n \leq 3$ (actually it's true for all n, feel free to try this if you want).
- (d) Let n = 3, ζ be a primitive cube root of 1 and $x = \alpha_1 + \zeta \alpha_2 + \zeta^2 \alpha_3$. Show that you can write x^3 in terms of the coefficients of f and \sqrt{D} .
- (d) Use this to produce a cubic formula (or at least show a cubic formula exists).
- 16. Let α be a complex root of the irreducible polynomial $x^3 x + 4$. Find the inverse of $\alpha^2 + \alpha + 1$ in $\mathbb{Q}[\alpha]$ explicitly, in the form $a + b\alpha + c\alpha^2$, with $a, b, c \in \mathbb{Q}$.
- 17. Let F be a field, and α an element that generates a field extension of F of degree 5. Prove that α^2 generates the same extension.
- 18. Let a be a root of the polynomial $x^3 x + 1$. Determine the minimal polynomial for $a^2 + 1$ over \mathbb{Q} .
- 19. (a) Let $a, b, c, d \in \mathbb{C}$ with $ad bc \neq 0$. Prove that there exists an automorphism σ of $\mathbb{C}(z)$ with $\sigma(z) = \frac{az+b}{cz+d}$ (these are called Mobius transformations)
 - (b) Determine the relationship between composition of Mobius transformations and matrix multiplication.
 - (c) Show that the automorphisms $\sigma(t) = it$ and $\tau(t) = t^{-1}$ of $\mathbb{C}(t)$ generate a group G that is isomorphic to the dihedral group D_4 .
 - (d) Let $u = t^4 + t^{-4}$. Show that u is fixed under H.
 - (e) What is $[\mathbb{C}(t) : \mathbb{C}(u)]$?
- 20. Let p be a prime. Determine the number of monic irreducible polynomials of degree two in \mathbb{F}_p . In particular, show that this number is positive and deduce that there exists a field with p^2 elements.

- 21. Let F be a field and let a_1, a_2, \ldots, a_n be the roots of a polynomial $f \in F[x]$ of degree n. Prove that $[F[a_1, \ldots, a_n] : F] \leq n!$.
- 22. Let R be an integral domain that contains a field F as a subring and is finite dimensional when viewed as a vector space over F. Prove that R is a field.
- 23. Let p be a prime number and let q be a power of p. Let K be a field extension of \mathbb{F}_p . Let L be a subfield of K with q elements.
 - (a) Show that if $x \in L$ then $x^q = x$ (Think about the group of units of L).
 - (b) Show that

$$L = \{ x \in K \mid x^q = x \}$$

(Hint: the number of roots of a polynomial is at most the degree)

- (c) Deduce that K has at exactly one subfield with q elements.
- (d) Show that any two fields with q elements are isomorphic?
- 24. Let $K = \mathbb{Q}[\sqrt[p]{n}, \zeta]$ where n is a positive integer that is not a p-th power, p is a prime, and $\zeta = e^{\frac{2\pi i}{p}}$.
 - (a) Find $[K : \mathbb{Q}]$ (Hint: What are the degrees of the intermediate field extensions?).
 - (b) Show that $|\operatorname{Aut}_{\mathbb{Q}}(K)| \leq p(p-1)$.
 - (c) Let $\alpha = \sqrt[p]{n} + \zeta$. Prove that $K = \mathbb{Q}[\alpha]$ (if it makes it simpler, assume n is large relative to p).
 - (d) Write $K = E[\zeta]$ and $K = F[\sqrt[p]{n}]$ for some appropriate subfields E and F. Deduce the existence of automorphisms σ_i and τ of K such that

$$\sigma_i(\sqrt[p]{n}) = \sqrt[p]{n}, \quad \sigma_i(\zeta) = \zeta^i$$

and

$$\tau(\sqrt[p]{n}) = \zeta \sqrt[p]{n}, \quad \tau(\zeta) = \zeta.$$

- (e) Show that the automorphism group of K is isomorphic to the group of invertible matrices of the form $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ where the entries are in \mathbb{F}_p .
- 25. Let *E* be a field. Let $\operatorname{Aut}(E)$ denote the group of all field isomorphisms $\varphi : E \to E$ with composition as multiplication. Let $H \subset \operatorname{Aut}(E)$ be a subgroup. Show that $E^H = \{e \in E \mid he = e \text{ for all } h \in H\}$ is a subfield of *E*.
- 26. Let $F = \mathbb{C}(w)$. Let $f(x) = x^4 4x^2 + 2 w$.
 - (a) Prove that f(x) is irreducible in F[x]. [Hint: Gauss' Lemma]
 - (b) Let K = F[x]/(f(x)). Prove that K is not a splitting field of f. [Hint: It may be easier to identify $w = t^4 + t^{-4}$ and identify F with the corresponding subfield of $\mathbb{C}(t)$, as here you can compute the roots of f explicitly]
- 27. Let K be a field. Let G be a finite group of automorphisms of K and let N be a normal subgroup of G. Let $L = K^N$ and $F = K^G$. Show how you can produce an injective homomorphism $G/N \hookrightarrow \operatorname{Aut}_F(L)$. Is this an isomorphism?
- 28. (a) Show that $Aut(\mathbb{Q})$ is the trivial group.

- (b) Show that $Aut(\mathbb{R})$ is the trivial group.
- 29. Let $p_n = x^n + y^n + z^n$ (these are the power sum symmetric functions in x, y and z).
 - (a) Write p_0 , p_1 and p_2 in terms of the elementary symmetric functions of x, y and z.
 - (b) Find a recurrence relation relating p_n to p_{n-1} , p_{n-2} and p_{n-3} .
 - (c) Can every symmetric polynomial in x, y and z be written as a polynomial in $p_0, p_1, p_2, p_3, \ldots$?
- 30. Let F be a field and $\delta \in F$ an element that is not a square in F (i.e., there does not exist $\alpha \in F$ such that $\alpha^2 = \delta$). Show that

$$K = \{ \begin{pmatrix} a & \delta b \\ b & a \end{pmatrix} \mid a, b \in F \} \subset M_{2 \times 2}(F)$$

is a field and that it is isomorphic to $F[\sqrt{\delta}] = F[x]/(x^2 - \delta)$.

31. Let $f(x) \in \mathbb{F}_p[x]$. For any polynomial $g(x) \in F[x]$, denote r(g(x)) to be the remainder after dividing g(x) by f(x).

Suppose $f(x) = p_1(x)p_2(x)\cdots p_k(x)$ is the factorisation of f into irreducibles. Suppose the $p_i(x)$ are all monic and distinct. Let g be a polynomial whose degree is smaller than the degree of g. Prove the following are equivalent

- (a) $r(g(x^p)) = g(x)$.
- (b) f(x) divides $\prod_{i=1}^{p} (g(x) i)$
- (c) For each *i* with $1 \le i \le k$, there exists s_i such that $p_i(x)$ divides $g(x) s_i$.
- 32. Let $F \subseteq \mathbb{C}$ be a field and suppose that $f \in F[x]$ is an irreducible (monic) quadratic polynomial. Let the roots of f be $\alpha, \beta \in \mathbb{C}$. Show that
 - (a) $F(\alpha) = F(\alpha, \beta)$
 - (b) $|\text{Gal}(F(\alpha)/F)| = 2$, $F(\alpha)$ is a Galois extension of F, and the non-trivial element in $\text{Gal}(F(\alpha)/F)$ permutes α and β .
- 33. (a) Show that if a and b are rational numbers with $(a+b\sqrt{2})^2 = 1+\sqrt{2}$, then $(a-b\sqrt{2})^2 = 1-\sqrt{2}$. Use this to show that $1+\sqrt{2}$ is not a square in $\mathbb{Q}[\sqrt{2}]$.
 - (b) Let $K = \mathbb{Q}[\sqrt{1+\sqrt{2}}]$. Find $[K:\mathbb{Q}]$.
 - (c) Show that K/\mathbb{Q} is not Galois. [Hint: If it were Galois, then the minimal polynomial of $\sqrt{1+\sqrt{2}}$ would have four roots in K. Find those roots. Are they real?] [Comment: $K/\mathbb{Q}[\sqrt{2}]$ is Galois and $\mathbb{Q}[\sqrt{2}]/\mathbb{Q}$ is Galois. This example shows that being Galois is not a transitive property of field extensions.]
- 34. The n-th cyclotomic polynomial is defined by

$$\Phi_n(x) = \prod_{1 \le k \le n, \gcd(n,k)=1} (x - e^{2\pi i k/n}).$$

A priori this lies in $\mathbb{C}[x]$ though we will prove a more precise result below. (Off topic aside: Although is is not experimentally clear, every integer appears as a coefficient of some cyclotomic polynomial.)

- (a) If p is prime, show that $\Phi_p(x) = \frac{x^{p-1}}{x-1} = x^{p-1} + \dots + x + 1$. Can you find a similar formula for Φ_n when n is a power of a prime?
- (b) Prove that

$$\prod_{d|n} \Phi_d(x) = x^n - 1$$

and use this to show by induction on n that $\Phi_n(x) \in \mathbb{Q}[x]$. (Actually it lies in $\mathbb{Z}[x]$ and we know how to prove that too)

- (c) Factor $\Phi_{12}(x)$ into irreducibles in $\mathbb{R}[x]$.
- (d) Prove that $\Phi_{12}(x)$ is irreducible in $\mathbb{Q}[x]$. (A more general fact is that $\Phi_n(x)$ is always irreducible in $\mathbb{Q}[x]$)
- (e) Show that the Galois group of $\Phi_{12}(x)$ over \mathbb{Q} is the Klein Four group.
- (f) Let p be a prime number with $p \equiv 1 \pmod{n}$. Prove that $\Phi_n(x)$ factors into linear factors in $\mathbb{F}_p[x]$. (Possible hint: From a previous tutorial, we know the multiplicative group of a finite field is cyclic)
- 35. (a) Let $GL_n(\mathbb{F}_q)$ be the group of invertible $n \times n$ matrices with entries in the field \mathbb{F}_q with q elements. Prove that

$$|GL_n(\mathbb{F}_q)| = \prod_{i=1}^n (q^n - q^{i-1})$$

- (b) Can you find a formula for $|SL_n(\mathbb{F}_q)|$? $(SL_n(\mathbb{F}_q)$ is the group of $n \times n$ matrices with determinant 1) [Hint: The determinant is a group homomorphism]
- (c) Let q be a power of the prime p. Show that the subgroup of upper-triangular matrices with 1's along the diagonal is a Sylow-p-subgroup of both $GL_n(\mathbb{F}_q)$ and $SL_n(\mathbb{F}_q)$.
- (d) Show that every finite group is isomorphic to a subgroup of $GL_n(\mathbb{F}_q)$ for some n. [Hint: permutation matrices] [Off topic aside: There exist infinite groups that are not subgroups of $GL_n(F)$ for any field F and any n]
- 36. Let H be a subgroup of G. Let P be a Sylow-p-subgroup of G. (recall this means that |P| is a power of p and |G|/|P| is not divisible by p) Consider the action of H on G/P. Show that there exists an orbit whose size is not divisible by p.
 - (a) Show that every stabiliser in the *H*-action on G/P is conjugate to a subgroup of *P*, hence has order a power of *p*.
 - (b) Combine the previous results to show that H has a Sylow-p-subgroup, hence proving the first Sylow Theorem.

37. Let $F = \mathbb{Q}(\sqrt[4]{2}, i)$.

- (a) Prove that F is a Galois field extension of \mathbb{Q}
- (b) Compute $[F : \mathbb{Q}]$.
- (c) Show that there exists $\tau \in \operatorname{Gal}_{\mathbb{Q}}(F)$ such that $\tau(\sqrt[4]{2}) = i\sqrt[4]{2}$ and $\tau(i) = i$. (Hint: Any automorphism must send $\sqrt[4]{2}$ to a root of $x^4 2$ and i to a root of $x^2 + 1$. How many possibilities does this provide and what is the size of the Galois group?).
- (d) Show that the Galois group $\operatorname{Gal}_{\mathbb{Q}}(F)$ is isomorphic to the dihedral group D_4 .
- (e) Find the intermediate fields between \mathbb{Q} and F. (have a look at Q4(b) if needed).

- 38. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible cubic with three complex roots $\alpha_1, \alpha_2, \alpha_3$. Let $D = (\alpha_1 \alpha_2)(\alpha_2 \alpha_3)(\alpha_3 \alpha_1)$. Let G be the Galois group of f, thought of as a subgroup of S_3 .
 - (a) Show that if $\sigma \in G$ then

$$\sigma(D) = \operatorname{sgn}(\sigma)D$$

(Here sgn is the sign of a permutation).

- (a) Show that G is a subgroup of the alternating group A_3 if and only if $D \in \mathbb{Q}$.
- (b) Generalise this to give a criterion for when a Galois group is a subgroup of A_n for any n.
- 39. Up to isomorphism, there are five transitive subgroups of S_4 . They are the cyclic group C_4 , the Klein four group $C_2 \times C_2$, the dihedral group D_4 , the alternating group A_4 and the symmetric group S_4 .
 - (a) Convince yourself you are aware of these groups.
 - (b) Let E/F be a degree four separable field extension. Is it always the case that there exists a field $F \leq G \leq E$ with [G:F] = 2? Hint: Let K be the Galois closure of E (so if E is given by adjoining a root of a quartic polynomial f(x), then K is the splitting field of f). Look at the list of five possibilities for Gal(K/F), each of which can occur. (Please assume that each of these can occur in order to solve this question, or prove it!)]
- 40. Let F be a field. Let G be the set of functions $f : F \to F$ of the form f(x) = ax + b where $a, b \in F$ with $a \neq 0$.
 - (a) Show that G is a group with the group multiplication being composition of functions (sometimes this is called the ax + b group).
 - (b) If F is a finite field with q elements, find |G|. (If q = 5, this gives an explicit construction of a transitive subgroup of S_5 with 20 elements).
 - (c) Let $f(x) = x^5 2$. Find the Galois group of f over \mathbb{Q} .
- 41. Let V be a vector space over a field F. Let G be a finite group which acts linearly on V (this means that $g(\lambda v) = \lambda(gv)$ and g(v + w) = v + w for all $\lambda \in F, v, w \in V$, in addition to the axioms of a group axiom 1v = v and (gh)v = g(hv).)
 - (a) Suppose that $|G| \neq 0$ in F. Let $x \in V$. Prove that gx = x for all $g \in G$ if and only if there exists $y \in V$ such that

$$x = \frac{1}{|G|} \sum_{g \in G} gy.$$

- (b) Let $F = \mathbb{Q}$ and $V = \mathbb{Q}(\sqrt[4]{2}, i)$. Let s denote complex conjugation and r the field automorphism of V with $r(\sqrt[4]{2}) = i\sqrt[4]{2}$ and r(i) = i. Use the previous formula with $y = \sqrt[4]{2}$ to come up with elements of V fixed by the order two subgroups $\langle rs \rangle$ and $\langle r^3s \rangle$.
- (c) Find the minimal polynomials over \mathbb{Q} of the elements you found in the previous part.
- 42. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^4 2$, including their automorphisms.
- 43. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^5 1$, including their automorphisms.

- 44. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^3 1$, including their automorphisms.
- 45. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^3 7$, including their automorphisms.
- 46. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^4 X^2 2$, including their automorphisms.
- 47. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^2 2$, including their automorphisms.
- 48. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^2 5X + 6$, including their automorphisms.
- 49. Analyze the poset of fields between \mathbb{F}_2 and the splitting field of $X^3 + X + 1$, including their automorphisms.
- 50. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^4 4X^2 5$, including their automorphisms.
- 51. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^3 56$, including their automorphisms.
- 52. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^2 3$, including their automorphisms.
- 53. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^2 2X 2$, including their automorphisms.
- 54. Show that

$$\mathbb{Q}(\sqrt{2},\sqrt{3}\sqrt{5})$$

is a Galois extension of \mathbb{Q} and analyze the poset of fields between \mathbb{Q} and the splitting field of $\mathbb{Q}(\sqrt{2},\sqrt{3}\sqrt{5})$, including their automorphisms.

- 55. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^4 1$, including their automorphisms.
- 56. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^3 2$, including their automorphisms.
- 57. Analyze the poset of fields between \mathbb{Q} and the splitting field of $X^4 + 1$, including their automorphisms.
- 58. Show that the only continuous automorphisms of \mathbb{C} are the identity and complex conjugation.
- 59. Let $\varphi \colon \mathbb{R} \to \mathbb{R}$ be an automorphism of \mathbb{R} .
 - (a) Show that if x > 0 then $\varphi(x) > 0$.
 - (b) Show that if x > y then $\varphi(x) > \varphi(y)$.
 - (c) Prove that $Aut(\mathbb{R})$ is {id}.
- 60. Show that $\operatorname{Aut}(\mathbb{Q}) = {\operatorname{id}}.$

- 61. Let \mathbb{F} be a field, $f \in \mathbb{F}[X]$ and $\mathbb{E} \supseteq \mathbb{F}$ a splitting field for f. Let $g \in \mathbb{F}[x]$ be irreducible and such that g divides f. Let $ab \in \mathbb{E}$ be two roots of g. Show that there exists and automorphism of \mathbb{E} sending a to b.
- 62. Let $\mathbb{F} \subseteq \mathbb{C}$ be a field and suppose that $f \in \mathbb{F}[X]$ is an irreducible quadratic. Let the roots of f be $a, b \in \mathbb{C}$. Show that $\mathbb{F}(a) = \mathbb{F}(a, b)$ and $|\text{Gal}(\mathbb{F}(a), \mathbb{F})| = 2$ and the nontrivial element in $\text{Gal}(\mathbb{F}(a)/\mathbb{F})$ interchanges a and b.
- 63. Let $\mathbb{E} \supseteq \mathbb{F}$, $f \in \mathbb{F}[X]$ and $\varphi \in Aut(\mathbb{E})$ and \mathbb{F} -automorphism. Show that if $a \in \mathbb{E}$ is a root of f then $\varphi(a)$ is also a root of f.
- 64. Let $\mathbb{E} \supseteq \mathbb{F}$, $f \in \mathbb{F}[X]$ and $\varphi \in Aut(\mathbb{E})$ and \mathbb{F} -automorphism. Show that $\varphi(a)$ permutes the roots of f.
- 65. Let \mathbb{E} be a field and let H be a subgroup of $\operatorname{Aut}(\mathbb{E})$. Show that \mathbb{E}^{H} is a subfield of \mathbb{E} .
- 66. Show that if E is a finite filed of order p^n and $d \in \mathbb{Z}_{>0}$ divides n then E has exactly one subfield of order p^d .
- 67. Let F be a finite filed with p^n elements. Write down a polynomial in F[X] that has no roots in F. Conclude that no finite field is algebraically closed.
- 68. Show that if $f \in \mathbb{F}_p[X]$ and if u is a root of f in some extension of \mathbb{F}_p then u^p is also a root of f in that extension.
- 69. Let F be a field of size $q = p^n$. Show that every irreducible polynomial in $\mathbb{F}_p[X]$ of degree n is a factor of $X^q X \in \mathbb{F}_p[X]$.
- 70. Show that if $\psi: E \to F$ is a (ring) homomorphism from one field to another and $\ker(\psi) \neq E$ then $\psi(1) = 1$.
- 71. Let \mathbb{F}_4 be the field containing 4 elements. Write out the addition and multiplication tables for \mathbb{F}_4 .
- 72. Give an example of two infinite fields that have the same cardinality but are not isomorphic.
- 73. Show that if $p \in \mathbb{Z}_{\geq 0}$ is prime and $n \in \mathbb{Z}_{\geq 1}$ then there exists an irreducible polynomial of degree n.
- 74. Give an example of an infinite field whose characteristic is not zero.
- 75. Suppose that E and K are two extensions of F and let $a \in E$ and $b \in K$ be algebraic over F. Prove that $m_{a,F} = m_{b,F}$ if and only if there exists an isomorphism $\varphi \colon F(a) \to F(b)$ such that $\varphi(a) = b$ and $\varphi|_F = \operatorname{id}_F$.
- 76. Let $E = \{a \in R \mid a \text{ is algebraic over } \mathbb{Q}\}$. Show that E is an algebraic extension of \mathbb{Q} but is not a finite extension of \mathbb{Q} .
- 77. Show that the set of algebraic numbers (over \mathbb{Q}) in \mathbb{R} forms a subfield of \mathbb{R} .
- 78. Let F be a field and let $k \in F$ such that k is not a square in F. Show that the subset of $M_{2\times 2}(F)$ given by

$$K = \left\{ \begin{pmatrix} a & kb \\ b & a \end{pmatrix} \mid a, b \in F \right\}$$

is a field and that it is isomorphic to $F(\sqrt{k})$.

- 79. Find the dimension and a basis for $\mathbb{R}(\sqrt{2}+i)$ over \mathbb{R} .
- 80. Find the dimension and a basis for $\mathbb{Q}(\sqrt{2}+i)$ over \mathbb{Q} .
- 81. Find the dimension and a basis for $\mathbb{Q}(\sqrt{2} + \sqrt{3})$ over \mathbb{Q} .
- 82. Find the dimension and a basis for $\mathbb{Q}(\sqrt{3}, i)$ over \mathbb{Q} .
- 83. Show that $2^{\frac{1}{3}}$ is algebraic over \mathbb{Q} and find the minimal polynomial.
- 84. Show that $\sqrt{3} + \sqrt{2}$ is algebraic over \mathbb{Q} and find the minimal polynomial.
- 85. Show that $\frac{1}{2}(\sqrt{5}+1)$ is algebraic over \mathbb{Q} and find the minimal polynomial.
- 86. Show that $\frac{1}{2}(\sqrt{3}-1)$ is algebraic over \mathbb{Q} and find the minimal polynomial.
- 87. Find $m_{a,\mathbb{Q}}$ and $\dim_{\mathbb{Q}}(\mathbb{Q}(a))$ for $a = \sqrt{3 \sqrt{6}}$. Don't forget to prove that your answer for $m_{a,\mathbb{Q}}$ is an irreducible polynomial in $\mathbb{Q}[X]$.
- 88. Find $m_{a,\mathbb{Q}}$ and $\dim_{\mathbb{Q}}(\mathbb{Q}(a))$ for $a = \sqrt{(\frac{1}{3})} + \sqrt{7}$. Don't forget to prove that your answer for $m_{a,\mathbb{Q}}$ is an irreducible polynomial in $\mathbb{Q}[X]$.
- 89. Find $m_{a,\mathbb{Q}}$ and $\dim_{\mathbb{Q}}(\mathbb{Q}(a))$ for $a = \sqrt{2} + i$. Don't forget to prove that your answer for $m_{a,\mathbb{Q}}$ is an irreducible polynomial in $\mathbb{Q}[X]$.
- 90. Show that every finite extension is algebraic.
- 91. Show that p is irreducible.
- 92. Let F be a field and $D: F[X] \to F[X]$ the map given by

$$D(a_0 + a_1X + \dots + a_nX) = a_1 + 2a_2X + \dots + a_nX^{n-1}.$$

- (a) (a)] Show that D(fg) = D(f)g + fD(g).
- (b) Suppose that $f \in F[X]$ is irreducible. Show that if $D(f) \neq 0$ then f has no multiple root in any extension field of F.
- (c) Show that if F has characteristic 0 and $f \in F[X]$ is irreducible then f has no repeated roots.
- 93. Let $K = \mathbb{Q}[\sqrt[6]{2}, e^{\frac{\pi i}{3}}]$. Find $[K : \mathbb{Q}]$.
- 94. Let $K = \mathbb{Q}[\sqrt[6]{2}, e^{\frac{\pi i}{3}}]$. Prove that K is a Galois extension of \mathbb{Q} .
- 95. Let $K = \mathbb{Q}[\sqrt[6]{2}, e^{\frac{\pi i}{3}}]$. Show that there exists an element $\sigma \in \operatorname{Gal}_{\mathbb{Q}}(K)$ such that

$$\sigma(\sqrt[6]{2}) = e^{\frac{\pi i}{3}} \sqrt[6]{2}$$
 and $\sigma(e^{\frac{\pi i}{3}}) = e^{\frac{\pi i}{3}}$.

- 96. Let $K = \mathbb{Q}[\sqrt[6]{2}, e^{\frac{\pi i}{3}}]$. Let γ be such that $\mathbb{Q}[\gamma]$ is the inteermediate field between K and \mathbb{Q} that corresponds to the cyclic subgroup generated by σ under the main theorem of Galois theory. Is $\mathbb{Q}[\gamma]$ a Galois extension of \mathbb{Q} ?
- 97. Let f = x(x-1)(x-2) + (x+1)(x+2). Determine whether or not $\mathbb{F}_5[x]/f\mathbb{F}_5[x]$ is a field.

98. For which $c \in \mathbb{F}_5$ does the equation $y^2 - c = 0$ have a solution in $\mathbb{F}_5[x]/f\mathbb{F}_5[x]$.

- 99. Let $f = x^3 + x^2 + x + 2$.
 - (a) Prove that $\mathbb{F}_3[x]/f\mathbb{F}_3[x]$ is a field.
 - (b) For which $c \in \mathbb{F}_3$ does the equation $y^2 c$ have a solution in $\mathbb{F}_3[x]/f\mathbb{F}_3[x]$?

100. Let $K = \mathbb{C}(t)$. Define automorphisms σ and τ of K by $\sigma(t) = 1 - t$ and $\tau(t) = \frac{1}{t}$. Let

$$w = \frac{(t^2 - t + 1)^3}{t^2(t - 1)^2}$$
 and $F = \mathbb{C}(w)$

- (a) Prove that $\sigma(w) = w$ and $\tau(w) = w$.
- (b) Find a polynomial $f \in F[x]$ of degree 6 which has t as a root. What are the other 5 roots of f in K?
- (c) Let G be the group generated by the automorphisms σ and τ . Prove that $F = K^G$. You may use without proof that $G \cong S_3$, the symmetric group on 3 letters.
- (d) How many fields are there with $F \subseteq E \subseteq K$?
- (e) How many of the fields from part (d) are Galois extensions of F?
- 101. Recall the definition of the Frobenius homomorphism and explicitly describe its action on \mathbb{F}_4 and \mathbb{F}_8 element by element.
- 102. For each element of \mathbb{F}_4 and \mathbb{F}_8 determine its irreducible polynomial over \mathbb{F}_2 .
- 103. What is $\sin(30^{\circ})$?
- 104. The triple angle formula for $\sin \theta$ is $\sin(3\theta) = 3\sin(\theta) 4\sin(\theta)^3$. Use this formula to decide (with proof) whether it is possible to trisect a 30° angle using compass and straightedge.
- 105. Let $F \subseteq K$ be a field extension and let $a \in K$. Under which condition do we call a algebraic over F? Under which condition do we call a transcendental over F?
- 106. Let $F \subseteq K$ be a field extension and let $a \in K$. Assume that a is algebraic over F. What is the definition of the irreducible polynomial of a over F?
- 107. Let $F \subseteq K$ be a field extension and let $a \in K$. Assume that F and K are finite fields. Determine (with proof) whether a is algebraic or transcendental.
- 108. What is the dimension of \mathbb{C} over \mathbb{Q} ?
- 109. Let K be a field. What is the definition of the characteristic of K?
- 110. Let $F \subseteq K$ be a field extension. Prove that char(F) = char(K).
- 111. Prove that finite fields have prime power order.
- 112. Recall the construction of the field $E = \mathbb{Q}(\sqrt[4]{2})$.
- 113. Let F be the splitting field of $x^4 2$ over \mathbb{Q} . Decide whether $E = \mathbb{Q}(\sqrt[4]{2})$ is equal to F.
- 114. Let F be the splitting field of $x^4 2$ over \mathbb{Q} . Identify the automorphism group of F over \mathbb{Q} .
- 115. State the four equivalent definitions of a Galois extension and prove that they are equivalent.

- 116. Let F be the splitting field of $x^4 2$ over \mathbb{Q} . Prove that F is a Galois extension of \mathbb{Q} .
- 117. Let F be the splitting field of $x^4 2$ over \mathbb{Q} . Write down the Galois correspondence, including automorphism groups, for F over \mathbb{Q} .
- 118. Let $F \subseteq K$ be a Galois extension. How exactly does the Galois coresspondence relate intermediate field extensions with subgroups of the Galois group?
- 119. Let $\zeta_n = e^{2\pi i/n} \in \mathbb{C}$. Find the irreducible polynomial of ζ_6 over \mathbb{Q} .
- 120. Let $\zeta_n = e^{2\pi i/n} \in \mathbb{C}$. Find the irreducible polynomial of ζ_9 over \mathbb{Q} .
- 121. Let $\zeta_n = e^{2\pi i/n} \in \mathbb{C}$. Find the irreducible polynomial of ζ_6 over $\mathbb{Q}(\zeta_3)$.
- 122. Let $\zeta_n = e^{2\pi i/n} \in \mathbb{C}$. Find the irreducible polynomial of ζ_9 over $\mathbb{Q}(\zeta_3)$.
- 123. Let E and F be fields with $E \supseteq F$ and let $a \in E$ such that $\deg(a, F) = 7$. Show that $F(a) = F(a^3)$.
- 124. Let $E \supseteq \mathbb{F}_3$ be an extension and let $f = x^2 + 1 \in \mathbb{F}_3[x]$.
 - (a) Let $a \in E$ be a root of F. Find a basis \mathcal{B} for the extension $\mathbb{F}_3(a) \supseteq \mathbb{F}_3$ considered as a vector space over \mathbb{F}_3 . What is the cardinatility of $\mathbb{F}_3(a)$?
 - (b) Using your result from (a) write down the elements of the field \mathbb{F}_9 (in terms of the basis \mathcal{B} .
 - (c) Find a generator for the group $\mathbb{F}_9(a)^{\times}$.
- 125. Let $f = x^4 4x^2 + 2 \in \mathbb{Q}[x]$ and let E be the splitting field of f over \mathbb{Q} .
 - (a) State the fundamental Theorem of Galois theory.
 - (b) Show that $[E : \mathbb{Q}] = 4$.
 - (c) Find the Galois group $\operatorname{Gal}(E/\mathbb{Q})$.
 - (d) Describe explicitly the intermediate fields $\mathbb{Q} \subseteq L \subseteq E$ and the Galois correspondence between the set of subgroups of $\operatorname{Gal}(E/\mathbb{Q})$ and the set of intermediate fields.
 - (e) Specify β such that $E = \mathbb{Q}(\beta)$.
- 126. Find a basis of $\mathbb{Q}(i, 2^{1/3})$ as a vector space over \mathbb{Q} .
- 127. Let $f = X^4 + X^2 + 1 \in \mathbb{F}_2[X]$. Give an explicit description of a field E that contains \mathbb{F}_2 and an element $a \in E$ that is a root of f.
- 128. Let $g \in \mathbb{Q}[X]$ be irreducible and let $n = \deg(g)$. Let $a \in \mathbb{C}$ be a root of g. Show that there are exactly n injective ring homomorphisms $\mathbb{Q}(a) \to \mathbb{C}$.
- 129. Let $p, n \in \mathbb{Z}_{>0}$ with p prime. Given that there exists a field of size p^n show that there is an irreducible polynomial of degree n in $\mathbb{F}_p[X]$.
- 130. Let F be a finite field. Show that F is not algebraically closed.
- 131. Let E be a finite field and let F_1 and F_2 be subfields of E. Show that if $|F_1| = |F_2|$ then $F_1 = F_2$.
- 132. Let E and F be fields with $E \supseteq F$. Define the Galois group of the extension.
- 133. State the fundamental theorem of Galois theory.

- 134. Let F be a field and let $E \supseteq F$ be an extension with [E:F] = 2. Prove that E is a Galois extension of F.
- 135. Give an example of a finite extension E of \mathbb{Q} that is not Galois.
- 136. Let $f = x^4 + 1 \in \mathbb{Q}[X]$ and let $E \subseteq \mathbb{C}$ be the splitting field of f over \mathbb{Q} and let $F = \mathbb{Q}(i)$.
 - (i) Show that $E \supseteq F$.
 - (ii) Find E:F].
 - (iii) Find the Galois group G = G(E/F).
 - (iv) List all subfields of E that contain F and for each give the corresponding subgroup of G.
- 137. Let $f = x^4 + 1 \in \mathbb{Q}[X]$ and let $E \subseteq \mathbb{C}$ be the splitting field of f over \mathbb{Q} and let $F = \mathbb{Q}(i)$.
 - (i) Show that complex conjugation induces a \mathbb{Q} -automorphism of E.
 - (ii) Denote by $\tau \in G(E/\mathbb{Q})$ the automorphism from (i). Show that the subgroup of G(E/Q) generated by τ is not normal in G(E/Q).
- 138. Let $p \in \mathbb{Z}_{>0}$ be prime, let $n \in \mathbb{Z}_{>0}$ and let \mathbb{F} be a finite field of size p^n .
 - (a) Show that the map $\varphi \colon \mathbb{F} \to \mathbb{F}$ given by $\varphi(x) = x^p$ is an isomorphism.
 - (b) Show that φ has order n.
 - (c) Show that every automorphism of \mathbb{F} is a power of φ .
- 139. Define what it means to say that an element $a \in \mathbb{E} \supseteq \mathbb{F}$ is algebraic over \mathbb{F} .
- 140. Determine the irreducible polynomial $\operatorname{irr}(a, \mathbb{F})$ for $a = \sqrt{3} + \sqrt{5}$, where $\mathbb{F} = \mathbb{Q}$.
- 141. Determine the irreducible polynomial $\operatorname{irr}(a, \mathbb{F})$ for $a = \sqrt{3} + \sqrt{5}$, where $\mathbb{F} = \mathbb{Q}(\sqrt{15})$.
- 142. Let R be an integral domain and let $\mathbb{F} \subseteq R$ be a subfield of R. Show that if R is finite dimension as a vector space over \mathbb{F} then R is a field.
- 143. Let $\zeta = e^{2\pi i/7}$.
 - (a) What is the irreducible polynomial $f = \operatorname{irr}(\zeta, \mathbb{Q})$ of ζ over \mathbb{Q} ?
 - (b) Show that $\mathbb{E} = \mathbb{Q}(\zeta)$ is the splitting field of f over \mathbb{Q} .
 - (c) Show that the Galois group $\operatorname{Gal}(E/\mathbb{Q})$ is cyclic.
 - (d) List all intermediate fields \mathbb{F} with $\mathbb{Q} \subseteq \mathbb{F} \subseteq \mathbb{Q}(\zeta)$ and for each give the group $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$.

144. Let $\mathbb{K} = \mathbb{Q}(\omega, \sqrt{5})$, where $\omega = e^{2\pi i/3}$.

- (a) Find a basis for \mathbb{K} over \mathbb{Q} .
- (b) Show that \mathbb{K} is a Gaois extension of \mathbb{Q} and describe the Galois group $G = \operatorname{Gal}(\mathbb{K}/\mathbb{Q})$.
- (c) Let $\beta = \omega + \sqrt{5} \in \mathbb{K}$. Compute the orbit of β under the action of G on K.
- (d) Use your answer to part (c) to write down $irr(\beta, \mathbb{Q})$, the irreducible polynomial of β over \mathbb{Q} .
- 145. Let \mathbb{F} be a field and $\mathbb{E} \supseteq \mathbb{F}$ an extension field. Let φ be an automorphism of \mathbb{E} satisfying $\varphi(x) = x$ for all $x \in \mathbb{F}$. Show that if $a \in \mathbb{E}$ is a root of $f \in \mathbb{F}[X]$ then $\varphi(a)$ is a root of f.

- 146. Let $f \in \mathbb{Q}[X]$ be irreducible with $\deg(f) = 3$ and let $\mathbb{E} \subseteq \mathbb{C}$ be the splitting field of f.
 - (i) Show that the Galois group $G(\mathbb{E}/Q)$ is isomorphic to S_3 or C_3 .
 - (ii) Show that if f has a root that is not real then $G(\mathbb{E}/\mathbb{Q}) \cong S_3$.
- 147. State the Fundamental theorem of Galois theory.
- 148. Let $f = X^7 1 \in \mathbb{Q}[X]$ and let $\mathbb{E} \subseteq \mathbb{C}$ be the splitting field of f.
 - (i) Find the Galois group G of \mathbb{E} .
 - (ii) List all subfields of \mathbb{E} and for each give the corresponding subgroup of G.
 - (iii) For each subfield of \mathbb{E} give a primitive element.
 - (iv) Which subfields of \mathbb{E} are Galois extensions of \mathbb{Q} ?
- 149. Define the degree of a field extension $\mathbb{E} \supseteq \mathbb{F}$ and determine the degree of $\mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q} .
- 150. Let L be a finite extension of a field K and let $f \in K[x]$ be an irreducible polynomial over K of degree at least 2. Show that if [L:K] and $\deg(f)$ are coprime then f has no root in L.
- 151. Explain why it is not possible to construct (with straight-edge and compass) a line segment whose length is $2^{1/3}$.
- 152. Let F be a field. Define the term splitting field of a polynomial $f \in F[x]$.
- 153. Let F be a field. Let $f \in F[x]$. Show that a splitting field of f exists.
- 154. Show that $\mathbb{Q}(5^{1/3})$ is not the splitting field of any polynomial over \mathbb{Q} .
- 155. State the main theorem of Galois theory.
- 156. Let $E = \mathbb{Q}(2^{1/3}, e^{2\pi i/3}).$
 - (i) Show that E is a Galois extension of \mathbb{Q} .
 - (ii) List all intermediate fields lying between \mathbb{Q} and E.
 - (iii) Which of the intermediate fields are Galois extensions of \mathbb{Q} ?
- 157. Let E and F be fields with F a subfield of E. What does it mean to say that $a \in E$ is algebraic over F?
- 158. Let *E* and *F* be fields with *F* a subfield of *E*. Let $a \in E$ be algebraic over *F*. Denote by F(a) the smallest subfield of *E* that contains *F* and *q*. Prove that $[F(a) : F] = \deg(a, F)$.
- 159. Let E and F be fields with F a subfield of E. Let $a \in E$ be algebraic over F. Denote by F[a] the smallest subring of E that contains both F and a. Prove that F(a) = F[a].
- 160. Show that $X^2 3$ and $X^2 2X 2$ have the same splitting field K over \mathbb{Q} .
- 161. Let K be the splitting field of $X^2 3$ over \mathbb{Q} . Find $[K : \mathbb{Q}]$.
- 162. Let $F = \mathbb{Z}/3\mathbb{Z}$ be the field with three elements and let $f = X^3 X + 1$.
 - (i) Show that f is irreducible over F.
 - (ii) How many elements are there in $E = \mathbb{F}[X]/(f)$?

- (iii) Determine the inverse of the element $a = X = (f) \in E$.
- (iv) Show that $Y^3 Y + 1$ splits completely into linear factors in E[Y] and find these factors.
- 163. State the main theorem of Galois theory.
- 164. Let K be the splitting field of the polynomial $X^5 1 \in \mathbb{Q}[X]$.
 - (i) Determine the Galois group $G(K/\mathbb{Q})$.
 - (ii) Give the correspondence between subfields of K and subgroups of $G(K/\mathbb{Q})$.
- 165. Let F be a field and let $f(x) \in F[x]$ be a nonconstant polynomial. Show that there is an extension field K of F in which f(x) has a root.
- 166. Find a basis for $\mathbb{Q}(i,\sqrt{5})$ as a vector space over \mathbb{Q} .
- 167. Define what it means to say that an element $a \in \mathbb{C}$ is algebraic over \mathbb{Q} .
- 168. Find the minimal polynomial over \mathbb{Q} of $(i\sqrt{3}-1)/2$.
- 169. Suppose that $a \in \mathbb{C}$ is algebraic over \mathbb{Q} and let $n = \deg(a, \mathbb{Q})$. Show that there are exactly n injective field homomorphisms $\mathbb{Q}(q) \to \mathbb{C}$.
- 170. Let K be the splitting field of the polynomial $x^3 11 \in \mathbb{Q}[x]$. Determine the Galois group $G(K/\mathbb{Q})$.
- 171. Let K be the splitting field of the polynomial $x^3 11 \in \mathbb{Q}[x]$. Give the correspondence between subfields of K and subgroups of $G(K/\mathbb{Q})$.
- 172. Let K be the splitting field of the polynomial $x^3 11 \in \mathbb{Q}[x]$. Which of the subfields are Galois extensions of \mathbb{Q} ?
- 173. Let F be a finite field of characteristic p. Show that there exists $r \in \mathbb{Z}_{>0}$ such that the number of elements in F is p^r .
- 174. Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{5})$.
 - (i) Calculate $[E:\mathbb{Q}]$.
 - (ii) Find an element $a \in E$ for which $E = \mathbb{Q}(a)$.
- 175. Suppose that $a \in \mathbb{R}$ is a constructible number. What can be said about the degree of a over \mathbb{Q} .
- 176. Let $r \in R$ be a root of the polynomial $x^3 + 3x + 1$. Explain why it is not possible to construct, with straight-edge and compass, a circle of radius r.
- 177. Show that the set of real numbers that are algebraic over \mathbb{Q} is a subfield of \mathbb{R} .
- 178. Find the Galois group of the extension $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{6})$. Explain why it is a Galois extension and list the correspondence between subgroups of G(K/Q) and subfields $Q \subseteq L \subseteq K$.
- 179. Let K be the splitting field of $f(x) = x^3 2$ in $\mathbb{Q}[x]$.
 - (i) Calculate $[K : \mathbb{Q}]$.
 - (ii) Find a basis for K as a Q-vector space.
 - (iii) Identify the Galois group G(K/Q) and identify it.

- (iv) Write down a field L such that $Q \subseteq L \subseteq K$ and L is not a Galois extension of \mathbb{Q} .
- 180. Suppose that $a \in \mathbb{R}$ is a constructible number. What can be said about the dimension of $\mathbb{Q}(a)$ as a vector space over \mathbb{Q} ?
- 181. Is it possible to construct a regular 9-gon with straight-edge and compass? Explain. What about a regular 6-gon?
- 182. Find the Galois groups of $K = \mathbb{Q}(\sqrt{2}, \sqrt{5})$ over \mathbb{Q} and list the correspondence between subgroups of $G(K/\mathbb{Q})$ and subfields $L \subseteq K$.
- 183. Find the Galois groups of $K = \mathbb{Q}(e^{2\pi i/3})$ over \mathbb{Q} and list the correspondence between subgroups of $G(K/\mathbb{Q})$ and subfields $L \subseteq K$.
- 184. Prove that there is no proper subfield of $\mathbb{Q}(e^{2\pi i/3})$ other than \mathbb{Q} .
- 185. Let K be the splitting field of the polynomial $f(x) = x^4 3$.
 - (a) Calculate $[K : \mathbb{Q}]$.
 - (b) Find a basis \mathcal{B} for K as a \mathbb{Q} -vector space.
 - (c) Give the size of the Galois group G(K/Q) and identify it.
 - (d) Write down a field L such that $\mathbb{Q} \subseteq L \subseteq K$ and L is not a Galois extension of \mathbb{Q} .
- 186. Let $a \in \mathbb{R}$ be a constructible number. What can be said about the degree of the extension $\mathbb{Q}(a)$ of \mathbb{Q} ?
- 187. Explain why it is not possible to construct with straight-edge and compass a line segment whose length is that of an edge of a cube of volume 5.
- 188. Let K be the splitting field of the polynomial $x^3 7 \in \mathbb{Q}[x]$. Find the Galois group of K as an extension of \mathbb{Q} .
- 189. Let K be the splitting field of the polynomial $x^3 7 \in \mathbb{Q}[x]$. Exhibit an intermediate subfield $L, \mathbb{Q} \subseteq L \subseteq K$ such that L is not a Galois extension of \mathbb{Q} .
- 190. Let $K = \mathbb{Q}(\omega, \sqrt{5})$ where $\omega = e^{2\pi i/3}$. Find a basis of K over \mathbb{Q} .
- 191. Let $K = \mathbb{Q}(\omega, \sqrt{5})$ where $\omega = e^{2\pi i/3}$. Show that K is a Galois extension of \mathbb{Q} and describe the Galois group $G = G(K/\mathbb{Q})$.
- 192. Let $\beta = \omega + \sqrt{5} \in K$. Compute the orbit of β under the action of G on K.
- 193. If a number $a \in \mathbb{R}$ is constructible what can be said about the degree of the extension $\mathbb{Q}(\alpha)$ of \mathbb{Q} ?
- 194. Is π constrictible?
- 195. Explain why it is not possible to construct with ruler and compass a line segment whose length is the length of an edge of a cube of volume 2.
- 196. Find the Galois group G of the splitting field K of $x^4 4x^2 5$ as an extension of Q. Explicitly write down the correspondence between the subgroups of G and the intermediate subfields of K.

- 197. Let $K = \mathbb{Q}(\omega, \sqrt[3]{7})$, where $\omega = e^{2\pi i/3}$. Show that K/\mathbb{Q} is a Galois extension of \mathbb{Q} and describe the Galois group $G = G(K/\mathbb{Q})$.
- 198. Let $K = \mathbb{Q}(\omega, \sqrt[3]{7})$, where $\omega = e^{2\pi i/3}$. Find the subgroup of the Galois group $G = G(K/\mathbb{Q})$ corresponding to the intermediate field $L = \mathbb{Q}(\sqrt[3]{7})$ under the Galois correspondence and show that L/\mathbb{Q} is not a Galois extension.
- 199. Let $K = \mathbb{Q}(\omega, \sqrt[3]{7})$, where $\omega = e^{2\pi i/3}$. Find a basis for K as a vector space over \mathbb{Q} .
- 200. Given that π is a transcendental number, explain why it is not possible to contruct (by ruler and compass) a square whose area is the same as the unit circle.
- 201. Explain why it is not possible to construct (by ruler and compass) a line segment whose length is the length of a side of a cube of volume 2.
- 202. Find the Galois group G of the splitting field K of $x^4 x^2 2$ as an extension of Q. Explicitly write down the correspondence between the subgroups of G and the intermediate subfields of K.
- 203. Let $K = \mathbb{Q}(\omega, \sqrt[3]{5})$, where $\omega = e^{2\pi i/3}$.
 - (i) Find a basis of K as a vector space over \mathbb{Q} .
 - (ii) Show that K/\mathbb{Q} is a Galois extension of \mathbb{Q} and describe the Galois group $G = G(K/\mathbb{Q})$.
 - (iii) Find the subgroup of G corresponding to the intermediate field $L = \mathbb{Q}(\sqrt[3]{5})$ under the Galois correspondence and show that L/\mathbb{Q} is not a Galois extension.
- 204. If a number $\alpha \in \mathbb{R}$ is constructible what can be said about the degree of the extension $\mathbb{Q}(\alpha)$ of \mathbb{Q} ?
- 205. Explain why it is not possible to construct with ruler and compass a line segment whose length is the length of a side of a cube with volume 2.
- 206. Find the Galois group G of the splitting field K of $x^3 5$ as an extension of \mathbb{Q} . Explicitly write down the correspondence between the subgroups of G and the intermediate subfields of K. Exhibit an intermediate subfield L of K such that L/\mathbb{Q} is not a Galois extension.
- 207. Let $K = \mathbb{Q}(\omega, \sqrt{7})$, where $\omega = e^{2\pi i/3}$. Let $\beta = \omega + \sqrt{7}$ which is an element of K.
 - (i) Find a basis for K over \mathbb{Q} .
 - (ii) Show that K/\mathbb{Q} is a Galois extension of \mathbb{Q} and describe the Galois group $G = G(K/\mathbb{Q})$.
 - (iii) Compute the orbit of β under the action of G.
 - (iv) What is the degree of the irreducible polynomial of β ?
 - (v) Explain why your answer to (iv) shows that β is a primitive element for K/\mathbb{Q} .

208. Let $K = \mathbb{Q}(\sqrt{2 - \sqrt{3}}).$

- (a) Find the degree of K over \mathbb{Q} .
- (b) Show that K is a splitting field of the minimal polynomial of $\sqrt{2-\sqrt{3}}$ over \mathbb{Q} .
- 209. Show that $\mathbb{Q}[2^{1/4}]$ is not the splitting field of any polynomial over \mathbb{Q} .

210. Let $i = \sqrt{-1}$. Show that $\mathbb{Q}[2^{1/4}, i]$ is the splitting field of a polynomial over \mathbb{Q} .

- 211. Let E be the smallest field extension of \mathbb{Q} containing $\omega = e^{2\pi i/5}$.
 - (a) Find a basis for E over \mathbb{Q} .
 - (b) Show that E is the splitting field of an irreducible polynomial over \mathbb{Q} .
 - (c) Find the Galois group of E/\mathbb{Q} .
 - (d) Show that there is only one subfield of E containing \mathbb{Q} which is different from E and \mathbb{Q} .

212. Let f(x) be the minimal polynomial of $\sqrt{-2} + \sqrt{3}$ over \mathbb{Q} .

- (a) Determine f(x).
- (b) Find the splitting field K of f(x) and determine the Galois group of K over \mathbb{Q} .
- 213. (a) Show that the polynomial $f(x) = x^3 + x^2 + 1$ is irreducible in $\mathbb{F}_2[x]$.
 - (b) Let η denote a root of f(x). Determine the number of elements and the degree of $\mathbb{F}_2(\eta)$ over \mathbb{F}_2 .
 - (c) Show that η^2 and $\eta^2 + \eta + 1$ are roots of f.
 - (d) Show $\mathbb{F}_2(\eta)$ is the splitting field of f.
 - (e) Prove that the only proper subfield of $\mathbb{F}_2(\eta)$ is \mathbb{F}_2 .
- 214. Find the minimal polynomial of $(\sqrt{2} + \sqrt{3})$ over \mathbb{Q} .
- 215. Determine the degree of the field extension $\mathbb{Q}(\sqrt{5}, 2^{1/3})$ over \mathbb{Q} .
- 216. Is it possible to construct by ruler and compass an angle of $\pi/9$?
- 217. Define the degree of a field extension and determine the degree of $\mathbb{Q}(\sqrt{5},\sqrt{7})$ over \mathbb{Q} .
- 218. Is it possible to trisect an angle of 3t degrees if $\cos(3t) = \frac{1}{3}$?