3.15 Lecture 18: Principal ideals

Let R be a commutative ring and let $p \in R$.

- The element p is prime if p satisfies $p \neq 0$ and $p R \neq R$ and

$$
\text { if } a, b \in R \text { and } a b \in p R \text { then } a \in p R \text { or } b \in p R \text {. }
$$

- The element p is irreducible if there do not exist $a, b \in R$ such that

$$
p=a b \text { and } a \notin R^{\times} \text {and } b \notin R^{\times} .
$$

In other words, an element $p \in R$ is prime if the principal ideal $p R$ is a prime ideal.
HW: Let $R=\mathbb{Z}[x]$. The element x is irreducible and $x R$ is a maximal principal ideal but $x R$ is not a maximal ideal since $R \supsetneq 7 R+x R \supsetneq x R$. The element x is also prime since $\mathbb{Z}[x] / x \mathbb{Z}[x] \cong \mathbb{Z}$ which is an integral domain.

HW:. Let $R=\mathbb{Z}[\sqrt{-5}]=\left\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\right.$. Define $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$ so that if $x, y \in R$ then $N(x y)=N(x) N(y)$. The element $3 \in R$ is irreducible since $N(3)=9$. The element 3 is not prime since 3 divides $(1+\sqrt{-5})(1-\sqrt{-5})=6$ but 3 does not divide $1+\sqrt{-5}$ and 3 does not divide $1-\sqrt{-5}$.

Let

$$
\mathcal{S}_{0}^{R}=\{\text { ideals of } R\} \quad \text { and } \quad \mathcal{P}_{0}^{R}=\{\text { principal ideals of } R\}
$$

partially ordered by inclusion.
Proposition 3.71. Let \mathbb{A} be an integral domain.

$$
\begin{array}{rll}
\mathbb{A} / \mathbb{A}^{\times} & \longleftrightarrow \mathcal{P}_{0}^{R} \\
d \mathbb{A}^{\times} & \longmapsto & d \mathbb{A}
\end{array} \quad \text { is a bijection } .
$$

(b) Let $d \in \mathbb{A}$. Then d is irreducible if and only if $d \mathbb{A}$ is a maximal principal ideal of \mathbb{A}.
(c) Let $d \in \mathbb{A}$. If d is prime then d is irreducible.
(d) Let $d \in \mathbb{A}$. If $\mathcal{P}_{[0, R]}$ satisfies $A C C$ and $d \neq 0$ and $d \notin \mathbb{A}^{\times}$then there exist $k \in \mathbb{Z}_{>0}$ and irreducible $p_{1}, \ldots, p_{k} \in R$ such that $a=p_{1} \cdots p_{k}$.

Proposition 3.72. Let \mathbb{A} be a PID.
(a) Let $d \in \mathbb{A}$. Then d is prime if and only if d is irreducible.
(b) The poset $\mathcal{P}_{[0, \mathbb{A}]}$ of principal ideals of \mathbb{A} satisfies ACC.

3.15.1 Some proofs

Proposition 3.73. Let \mathbb{A} be an integral domain.

$$
\begin{aligned}
\mathbb{A} / \mathbb{A}^{\times} & \longleftrightarrow \mathcal{P}_{0}^{R} \\
d \mathbb{A}^{\times} & \longmapsto d \mathbb{A}
\end{aligned} \quad \text { is a bijection }
$$

(b) Let $d \in \mathbb{A}$. Then d is irreducible if and only if $d \mathbb{A}$ is a maximal principal ideal of \mathbb{A}.
(c) Let $d \in \mathbb{A}$. If d is prime then d is irreducible.
(d) Let $d \in \mathbb{A}$. If $\mathcal{P}_{[0, R]}$ satisfies $A C C$ and $d \neq 0$ and $d \notin \mathbb{A}^{\times}$then there exist $k \in \mathbb{Z}_{>0}$ and irreducible $p_{1}, \ldots, p_{k} \in R$ such that $a=p_{1} \cdots p_{k}$.

Proof.

To show: (aa) If $x, y \in \mathbb{A}$ and $x \mathbb{A}=y \mathbb{A}$ then there exists $u \in \mathbb{A}^{\times}$such that $x=y u$.
(ab) If there exists $u \in \mathbb{A}^{\times}$such that $x=y u$ then $x \mathbb{A}=y \mathbb{A}$.
(ba) If $d \in \mathbb{A}$ and d is irreducible then $d \mathbb{A}$ is a maximal principal ideal of \mathbb{A}.
(bb) If $d \in \mathbb{A}$ and $d \mathbb{A}$ is a maximal principal ideal of R then d is irreducible.
(aa) Assume $x, y \in \mathbb{A}$ and $x \mathbb{A}=y \mathbb{A}$.
Since $x \in y \mathbb{A}$ then there exists $v \in \mathbb{A}$ such that $x=y v$.
Since $y \in x \mathbb{A}$ then there exists $u \in \mathbb{A}$ such that $y=x u$.
So $x=y v=x u v$.
Using that \mathbb{A} is an integral domain then the cancellation law gives that $u v=1$.
So $u \in \mathbb{A}^{\times}$.
(ab) Assume that there exists $u \in \mathbb{A}^{\times}$such that $x=y u$.
Then $x \mathbb{A}=y u \mathbb{A} \subseteq y \mathbb{A}$ and $y \mathbb{A}=x u^{-1} \mathbb{A} \subseteq x \mathbb{A}$.
So $x \mathbb{A}=y \mathbb{A}$.
(ba) Assume $d \mathbb{A}$ is not a maximal principal ideal.
Then there exists a principal ideal $g \mathbb{A}$ such that $d \mathbb{A} \subsetneq g \mathbb{A} \subsetneq \mathbb{A}$.
So $d=g h$ and $g \notin \mathbb{A}^{\times}$and $h \notin \mathbb{A}^{\times}$.
So d is reducible.
(bb) Assume that d is reducible.
Then there exist $g, h \in \mathbb{A}$ such that $d=g h$ and $g, h \notin \mathbb{A}^{\times}$.
So $d \mathbb{A} \subsetneq g \mathbb{A} \subsetneq \mathbb{A}$.
So $d \mathbb{A}$ is not a maximal principal ideal.
(c) Assume that $d \in \mathbb{A}$ and d is prime.

To show: d is irreducible.
To show: If $d=a b$ then $a \in \mathbb{A}^{\times}$or $b \in \mathbb{A}^{\times}$.
Assume $d=a b$. Then $a b \in d \mathbb{A}$.
Since d is prime then $a \in d \mathbb{A}$ or $b \in d \mathbb{A}$.
Case 1: $a \in d \mathbb{A}$.
Since $a \in d \mathbb{A}$ then there exists $r \in \mathbb{A}$ such that $a=d r$.
So $d=a b=d r b$.
By the cancellation law, then $r b=1$ and $b \in \mathbb{A}^{\times}$.
Case 2: $b \in d \mathbb{A}$.
Since $b \in d \mathbb{A}$ then there exists $s \in \mathbb{A}$ such that $b=d s$.
So $d=a b=d a s$.

By the cancellation law, then as $=1$ and $a \in \mathbb{A}^{\times}$.
So d is irreducible.
(d) To show: If there exists $m \in R$ with $m \neq 0$ and $m \notin R^{\times}$that does not have a finite factorization into irreducible then \mathcal{P}_{0}^{R} does not satisfy ACC.
Assume that there exists $m \in R$ with $m \neq 0$ and $m \notin R^{\times}$that does not have a finite factorization into irreducible elements.
Since m is not irreducible then there exist $a, b \in R$ such that $a, b \notin R^{\times}$and $m=a b$.
Since m does not have a finite irreducible factorization then at least one of a and b does not have an irreducible factorization.
So there exists $m_{1} \in R$ such that

$$
m R \subsetneq m_{1} R \subsetneq R \quad \text { and } m_{1} \text { does not have a finite irreducible factorization. }
$$

Repeating the process with m_{1}, there exists $m_{2} \in R$ such that
$m R \subsetneq m_{1} R \subsetneq m_{2} R \subsetneq R \quad$ and m_{2} does not have a finite irreducible factorization.
In this way $m R \subsetneq m_{1} R \subsetneq m_{2} R \subsetneq \cdots$ is a non-finite increasing chain in \mathcal{P}_{0}^{R}. So \mathcal{P}_{0}^{R} does not satisfy ACC.

Proposition 3.74. Let \mathbb{A} be a PID.
(a) Let $d \in \mathbb{A}$. Then d is prime if and only if d is irreducible.
(b) The poset $\mathcal{P}_{[0, \mathbb{A}]}$ of principal ideals of \mathbb{A} satisfies ACC.

Proof.
(a) \Rightarrow : Assume that $d \in \mathbb{A}$ and d is prime.

To show: d is irreducible.
To show: If $d=a b$ then $a \in \mathbb{A}^{\times}$or $b \in \mathbb{A}^{\times}$.
Assume $d=a b$. Then $a b \in d \mathbb{A}$.
Since d is prime then $a \in d \mathbb{A}$ or $b \in d \mathbb{A}$.
Case 1: $a \in d \mathbb{A}$.
Since $a \in d \mathbb{A}$ then there exists $r \in \mathbb{A}$ such that $a=d r$.
So $d=a b=d r b$.
By the cancellation law, then $r b=1$ and $b \in \mathbb{A}^{\times}$.
Case 2: $b \in d \mathbb{A}$.
Since $b \in d \mathbb{A}$ then there exists $s \in \mathbb{A}$ such that $b=d s$.
So $d=a b=d a s$.
By the cancellation law, then $a s=1$ and $a \in \mathbb{A}^{\times}$.
So d is irreducible.
(a) $\Leftarrow:$ Assume that $d \in \mathbb{A}$ and d is irreducible.

So $d \mathbb{A}$ is a maximal principal ideal.
Since \mathbb{A} is a PID then $\mathcal{S}_{[0, R]}=\mathcal{P}_{[0, R]}$ and $d \mathbb{A}$ is a maximal ideal.
Since $d \mathbb{A}$ is a maximal ideal then $d \mathbb{A}$ is a prime ideal.
So $d \in \mathbb{A}$ is prime.
(b) Let $I_{1} \subseteq I_{2} \subseteq \cdots$ be an ascending chain of ideals in \mathbb{A}.

To show: There exists $k \in \mathbb{Z}_{>0}$ and $n \in \mathbb{Z}_{>k}$ then $I_{n}=I_{k}$.
Let

$$
I_{\mathrm{un}}=\bigcup_{j \in \mathbb{Z}_{>0}} I_{j} .
$$

Then $I_{\text {un }}$ is an ideal of \mathbb{A}.
Since \mathbb{A} is a PID then there exists $d \in \mathbb{A}$ such that $I_{\text {un }}=d \mathbb{A}$.
To show: There exists $k \in \mathbb{Z}_{>0}$ and $n \in \mathbb{Z}_{>k}$ then $I_{n}=I_{k}$.
Let $k \in \mathbb{Z}_{>0}$ such that $d \in I_{k}$.
To show: If $n \in \mathbb{Z}_{>k}$ then $I_{n}=I_{k}$.
Assume $n \in \mathbb{Z}_{>k}$. Then

$$
I_{k} \subseteq I_{n} \subseteq I_{\mathrm{un}}=d \mathbb{A} \subseteq I_{k} .
$$

So $I_{n}=I_{k}$.
So \mathbb{A} satisfies ACC.

