3.15 Lecture 18: Principal ideals

Let R be a commutative ring and let $p \in R$.

• The element p is **prime** if p satisfies $p \neq 0$ and $pR \neq R$ and

if $a, b \in R$ and $ab \in pR$ then $a \in pR$ or $b \in pR$.

• The element p is **irreducible** if there do not exist $a, b \in R$ such that

$$p = ab$$
 and $a \notin R^{\times}$ and $b \notin R^{\times}$.

In other words, an element $p \in R$ is prime if the principal ideal pR is a prime ideal.

HW: Let $R = \mathbb{Z}[x]$. The element x is irreducible and xR is a maximal principal ideal but xR is not a maximal ideal since $R \supseteq 7R + xR \supseteq xR$. The element x is also prime since $\mathbb{Z}[x]/x\mathbb{Z}[x] \cong \mathbb{Z}$ which is an integral domain.

HW: Let $R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}.$ Define $N(a + b\sqrt{-5}) = a^2 + 5b^2$ so that if $x, y \in R$ then N(xy) = N(x)N(y). The element $3 \in R$ is irreducible since N(3) = 9. The element 3 is not prime since 3 divides $(1 + \sqrt{-5})(1 - \sqrt{-5}) = 6$ but 3 does not divide $1 + \sqrt{-5}$ and 3 does not divide $1 - \sqrt{-5}$.

Let

$$\mathcal{S}_0^R = \{ \text{ideals of } R \}$$
 and $\mathcal{P}_0^R = \{ \text{principal ideals of } R \}$

partially ordered by inclusion.

Proposition 3.71. Let \mathbb{A} be an integral domain.

$$\begin{array}{cccc} \mathbb{A}/\mathbb{A}^{\times} & \longleftrightarrow & \mathcal{P}_0^R \\ d\mathbb{A}^{\times} & \longmapsto & d\mathbb{A} \end{array} \quad is \ a \ bijection. \end{array}$$

- (b) Let $d \in \mathbb{A}$. Then d is irreducible if and only if $d\mathbb{A}$ is a maximal principal ideal of \mathbb{A} .
- (c) Let $d \in \mathbb{A}$. If d is prime then d is irreducible.
- (d) Let $d \in \mathbb{A}$. If $\mathcal{P}_{[0,R]}$ satisfies ACC and $d \neq 0$ and $d \notin \mathbb{A}^{\times}$ then there exist $k \in \mathbb{Z}_{>0}$ and irreducible $p_1, \ldots, p_k \in R$ such that $a = p_1 \cdots p_k$.

Proposition 3.72. Let \mathbb{A} be a PID.

(a) Let $d \in \mathbb{A}$. Then d is prime if and only if d is irreducible.

(b) The poset $\mathcal{P}_{[0,\mathbb{A}]}$ of principal ideals of \mathbb{A} satisfies ACC.

3.15.1 Some proofs

Proposition 3.73. Let \mathbb{A} be an integral domain.

$$\begin{array}{cccc} \mathbb{A}/\mathbb{A}^{\times} & \longleftrightarrow & \mathcal{P}_0^R \\ d\mathbb{A}^{\times} & \longmapsto & d\mathbb{A} \end{array} \quad is \ a \ bijection. \end{array}$$

- (b) Let $d \in \mathbb{A}$. Then d is irreducible if and only if $d\mathbb{A}$ is a maximal principal ideal of \mathbb{A} .
- (c) Let $d \in \mathbb{A}$. If d is prime then d is irreducible.

(d) Let $d \in \mathbb{A}$. If $\mathcal{P}_{[0,R]}$ satisfies ACC and $d \neq 0$ and $d \notin \mathbb{A}^{\times}$ then there exist $k \in \mathbb{Z}_{>0}$ and irreducible $p_1, \ldots, p_k \in R$ such that $a = p_1 \cdots p_k$.

Proof.

To show: (aa) If $x, y \in \mathbb{A}$ and $x\mathbb{A} = y\mathbb{A}$ then there exists $u \in \mathbb{A}^{\times}$ such that x = yu. (ab) If there exists $u \in \mathbb{A}^{\times}$ such that x = yu then $x\mathbb{A} = y\mathbb{A}$. (ba) If $d \in \mathbb{A}$ and d is irreducible then $d\mathbb{A}$ is a maximal principal ideal of \mathbb{A} . (bb) If $d \in \mathbb{A}$ and $d\mathbb{A}$ is a maximal principal ideal of R then d is irreducible. (aa) Assume $x, y \in \mathbb{A}$ and $x\mathbb{A} = y\mathbb{A}$. Since $x \in y\mathbb{A}$ then there exists $v \in \mathbb{A}$ such that x = yv. Since $y \in x\mathbb{A}$ then there exists $u \in \mathbb{A}$ such that y = xu. So x = yv = xuv. Using that A is an integral domain then the cancellation law gives that uv = 1. So $u \in \mathbb{A}^{\times}$. (ab) Assume that there exists $u \in \mathbb{A}^{\times}$ such that x = yu. Then $x\mathbb{A} = yu\mathbb{A} \subseteq y\mathbb{A}$ and $y\mathbb{A} = xu^{-1}\mathbb{A} \subseteq x\mathbb{A}$. So $x\mathbb{A} = y\mathbb{A}$. (ba) Assume $d\mathbb{A}$ is not a maximal principal ideal. Then there exists a principal ideal $g\mathbb{A}$ such that $d\mathbb{A} \subsetneq g\mathbb{A} \subsetneq \mathbb{A}$. So d = gh and $g \notin \mathbb{A}^{\times}$ and $h \notin \mathbb{A}^{\times}$. So d is reducible. (bb) Assume that d is reducible. Then there exist $g, h \in \mathbb{A}$ such that d = gh and $g, h \notin \mathbb{A}^{\times}$. So $d\mathbb{A} \subsetneq g\mathbb{A} \subsetneq \mathbb{A}$. So $d\mathbb{A}$ is not a maximal principal ideal. (c) Assume that $d \in \mathbb{A}$ and d is prime. To show: d is irreducible. To show: If d = ab then $a \in \mathbb{A}^{\times}$ or $b \in \mathbb{A}^{\times}$. Assume d = ab. Then $ab \in d\mathbb{A}$. Since d is prime then $a \in d\mathbb{A}$ or $b \in d\mathbb{A}$. Case 1: $a \in d\mathbb{A}$. Since $a \in d\mathbb{A}$ then there exists $r \in \mathbb{A}$ such that a = dr. So d = ab = drb. By the cancellation law, then rb = 1 and $b \in \mathbb{A}^{\times}$. Case 2: $b \in d\mathbb{A}$. Since $b \in d\mathbb{A}$ then there exists $s \in \mathbb{A}$ such that b = ds. So d = ab = das.

By the cancellation law, then as = 1 and $a \in \mathbb{A}^{\times}$.

So d is irreducible.

(d) To show: If there exists $m \in R$ with $m \neq 0$ and $m \notin R^{\times}$ that does not have a finite factorization into irreducible then \mathcal{P}_0^R does not satisfy ACC.

Assume that there exists $m \in R$ with $m \neq 0$ and $m \notin R^{\times}$ that does not have a finite factorization into irreducible elements.

Since m is not irreducible then there exist $a, b \in R$ such that $a, b \notin R^{\times}$ and m = ab.

Since m does not have a finite irreducible factorization then at least one of a and b does not have an irreducible factorization.

So there exists $m_1 \in R$ such that

 $mR \subsetneq m_1 R \subsetneq R$ and m_1 does not have a finite irreducible factorization.

Repeating the process with m_1 , there exists $m_2 \in R$ such that

 $mR \subsetneq m_1 R \subsetneq m_2 R \subsetneq R$ and m_2 does not have a finite irreducible factorization.

In this way $mR \subsetneq m_1R \subsetneq m_2R \subsetneq \cdots$ is a non-finite increasing chain in \mathcal{P}_0^R . So \mathcal{P}_0^R does not satisfy ACC.

Proposition 3.74. Let \mathbb{A} be a PID.

- (a) Let $d \in \mathbb{A}$. Then d is prime if and only if d is irreducible.
- (b) The poset $\mathcal{P}_{[0,\mathbb{A}]}$ of principal ideals of \mathbb{A} satisfies ACC.

Proof.

(a) ⇒: Assume that d ∈ A and d is prime. To show: d is irreducible. To show: If d = ab then a ∈ A[×] or b ∈ A[×]. Assume d = ab. Then ab ∈ dA. Since d is prime then a ∈ dA or b ∈ dA.
Case 1: a ∈ dA.
Since a ∈ dA then there exists r ∈ A such that a = dr. So d = ab = drb. By the cancellation law, then rb = 1 and b ∈ A[×].
Case 2: b ∈ dA. Since b ∈ dA then there exists s ∈ A such that b = ds. So d = ab = das. By the cancellation law, then as = 1 and a ∈ A[×].

So d is irreducible.

(a) \Leftarrow : Assume that $d \in \mathbb{A}$ and d is irreducible.

So $d\mathbb{A}$ is a maximal principal ideal.

Since \mathbb{A} is a PID then $\mathcal{S}_{[0,R]} = \mathcal{P}_{[0,R]}$ and $d\mathbb{A}$ is a maximal ideal. Since $d\mathbb{A}$ is a maximal ideal then $d\mathbb{A}$ is a prime ideal. So $d \in \mathbb{A}$ is prime.

(b) Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain of ideals in \mathbb{A} . To show: There exists $k \in \mathbb{Z}_{>0}$ and $n \in \mathbb{Z}_{>k}$ then $I_n = I_k$. Let

$$I_{\mathrm{un}} = \bigcup_{j \in \mathbb{Z}_{>0}} I_j.$$

Then I_{un} is an ideal of \mathbb{A} .

Since A is a PID then there exists $d \in A$ such that $I_{un} = dA$. To show: There exists $k \in \mathbb{Z}_{>0}$ and $n \in \mathbb{Z}_{>k}$ then $I_n = I_k$. Let $k \in \mathbb{Z}_{>0}$ such that $d \in I_k$. To show: If $n \in \mathbb{Z}_{>k}$ then $I_n = I_k$. Assume $n \in \mathbb{Z}_{>k}$. Then

$$I_k \subseteq I_n \subseteq I_{\mathrm{un}} = d\mathbb{A} \subseteq I_k.$$

So $I_n = I_k$. So \mathbb{A} satisfies ACC.