1.3 Lecture 4: Theorem of the primitive element

Proposition 1.8. Let \mathbb{F} be a field and let $\overline{\mathbb{F}}$ be an algebraically closed field containing \mathbb{F} . Let $\alpha, \beta \in \overline{\mathbb{F}}$ and let $c \in \mathbb{F}$. Let $\alpha_1, \ldots, \alpha_r$ be the roots of $m_{\alpha, \mathbb{F}}(x)$ and let β_1, \ldots, β_s be the roots of $m_{\beta, \mathbb{F}}(x)$ so that

$$m_{\alpha,\mathbb{F}}(x) = (x - \alpha_1) \cdots (x - \alpha_r)$$
 and $m_{\beta,\mathbb{F}}(x) = (x - \beta_1) \cdots (x - \beta_s)$ in $\overline{\mathbb{F}}[x]$

and $\alpha = \alpha_1$ and $\beta = \beta_1$. Assume that

$$c \notin \left\{ \frac{-(\beta - \beta_j)}{(\alpha - \alpha_i)} \mid i \in \{1, \dots, r\}, j \in \{1, \dots, s\} \text{ with } (i, j) \neq (1, 1) \right\}$$

then

$$\mathbb{F}(\alpha,\beta) = \mathbb{F}(\alpha + c\beta).$$

Proof.

To show: (a) $\mathbb{F}(\alpha + c\beta) \subseteq \mathbb{F}(\alpha, \beta)$. (b) $\mathbb{F}(\alpha, \beta) \subseteq \mathbb{F}(\alpha + c\beta)$. (a) To show: $\alpha + c\beta \in \mathbb{F}(\alpha, \beta)$.

(b) To show: (ba) $\alpha \in \mathbb{F}(\alpha + c\beta)$ (bb) $\beta \in \mathbb{F}(\alpha + c\beta)$.

(ba) To show: $m_{\alpha,\mathbb{F}(\alpha+c\beta)}(x) = x - \alpha$. Since

 $m_{\alpha,\mathbb{F}}(x) \in \mathbb{F}(\alpha,\beta)[x]$ and $h(x) = m_{\beta,\mathbb{F}}(\beta + c\alpha - cx) \in \mathbb{F}(\alpha,\beta)[x]$

and

$$m_{\alpha,\mathbb{F}}(\alpha) = 0,$$
 and $h(\alpha) = 0$

then $m_{\alpha,\mathbb{F}(\alpha+c\beta)}(x)$ is a common divisor of $m_{\alpha,\mathbb{F}}(x)$ and $h(x) = m_{\beta,\mathbb{F}}(\beta+c\alpha-cx)$. As elements of $\overline{\mathbb{F}}[x]$, $m_{\alpha,\mathbb{F}}(x)$ factors as $m_{\alpha,\mathbb{F}}(x) = (x-\alpha)(x-\alpha_2)\dots(x-\alpha_r)$ and h(x) factors as

$$h(x) = (\beta + c\alpha - cx - \beta_1) \cdots (\beta + c\alpha - cx - \beta_s).$$

Since $c^{-1}\beta + \alpha - c^{-1}\beta_j \neq \alpha_i$ except when i = 1 and j = 1 then

 $gcd(m_{\alpha,\mathbb{F}}(x),h(x)) = x - \alpha.$

So $m_{\alpha,\mathbb{F}(\alpha+c\beta)}(x) = x - \alpha$. So $\alpha \in \mathbb{F}(\alpha+c\beta)$.

Theorem 1.9. Let \mathbb{F} be a field and let \mathbb{K} be the splitting field of a polynomial $f(x) \in \mathbb{F}[x]$. Then there exists $\gamma \in \mathbb{F}$ such that

$$\mathbb{K} = \mathbb{F}(\gamma).$$

Proof. Let $\alpha_1, \ldots, \alpha_k \in \mathbb{K}$ be the roots of f(x) so that $f(x) = (x - \alpha_1) \cdots (x - \alpha_k)$ in $\mathbb{K}[x]$. Then

$$\mathbb{K} = \mathbb{F}(\alpha_1, \ldots, \alpha_k)$$

By induction on ℓ , the theorem of the primitive element gives that if $\ell \in \{1, \ldots, k\}$ then there exists $\gamma_{\ell} \in \mathbb{K}$ such that

$$\mathbb{F}(\alpha_1,\ldots,\alpha_\ell)=\mathbb{F}(\gamma_{\ell-1},\alpha_\ell)=\mathbb{F}(\gamma_\ell).$$

Let $\gamma = \gamma_k$.