6.9 The field extension $\mathbb{F}(\alpha)$

Let \mathbb{F} be a field and let \mathbb{E} be an extension of \mathbb{F} .

• Let $\alpha \in \mathbb{E}$. The **minimal polynomial of** α over \mathbb{F} is the monic irreducible polynomial $m_{\alpha,\mathbb{F}}(x) \in \mathbb{F}[x]$ such that

 $m_{\alpha,\mathbb{F}}(x)$ generates $\ker(\operatorname{ev}_{\alpha} \colon \mathbb{F}[x] \to \mathbb{E}).$

• Let $\alpha \in \mathbb{E}$. The ring

 $\mathbb{F}[\alpha] = \operatorname{im}(\operatorname{ev}_{\alpha} \colon \mathbb{F}[x] \to \mathbb{E})$

is the image of the evaluation homomorphism ev_{α} .

- Let $\alpha \in \mathbb{E}$. The field generated by \mathbb{F} and α is the subfield $\mathbb{F}(\alpha)$ of \mathbb{E} such that
 - (a) $\mathbb{F}(\alpha)$ contains \mathbb{F} and α ,
 - (b) If \mathbb{K} is a subfield of \mathbb{E} which contains \mathbb{F} and α then $\mathbb{K} \supseteq \mathbb{F}(\alpha)$.

Proposition 6.19. Let \mathbb{E} be an extension of \mathbb{F} and let $\alpha \in \mathbb{E}$. Then

$$\mathbb{F}(\alpha) = \mathbb{F}[\alpha] \cong \frac{\mathbb{F}[x]}{(m_{\alpha,\mathbb{F}}(x))}.$$

6.10 The theorem of the primitive element

Let \mathbb{F} be a field.

• The Frobenius map is the field morphism $F \colon \mathbb{F} \to \mathbb{F}$ given by

$$\text{if } \operatorname{char}(\mathbb{F}) = 0 \text{ and } \alpha \in \mathbb{F} \qquad \text{then } F(\alpha) = \alpha,$$

if
$$p \in \mathbb{Z}_{>0}$$
 and char(\mathbb{F}) = p and $\alpha \in \mathbb{F}$ then $F(\alpha) = \alpha^p$.

• A perfect field is a field \mathbb{F} such that the Frobenius map $F \colon \mathbb{F} \to \mathbb{F}$ is an automorphism.

Theorem 6.20. (Theorem of the primitive element) Assume that

 \mathbb{F} is perfect and $\dim_{\mathbb{F}}(\mathbb{K})$ is finite.

Then there exists $\theta \in \mathbb{K}$ such that $\mathbb{K} = \mathbb{F}(\theta)$.