1.16 Lecture 14: Fields and Integral Domains

1.16.1 R/M is a field $\iff M$ is a maximal ideal.

Definition.

- A field is a commutative ring F such that if $x \in F$ and $x \neq 0$ then there exists an element $x^{-1} \in F$ such that $xx^{-1} = 1$.
- A maximal ideal is an ideal M of a ring R such that
 - (a) $M \neq R$,
 - (b) If N is an ideal of R and $M \subsetneq P$ then P = R.

Lemma 1.69. Let F be a commutative ring. Then F is a field if and only if the only ideals of F are $\{0\}$ and F.

Theorem 1.70. Let R be a commutative ring and let M be an ideal of R. Then

R/M is a field if and only if M is a maximal ideal.

1.16.2 R/P is an integral domain \iff P is a prime ideal.

Definition.

• An integral domain is a commutative ring R such that

(Cancellation law) if $a, b, c \in R$ and $c \neq 0$ and ac = bc then a = b.

• A prime ideal is an ideal P in a commutative ring R such that if $a, b \in R$ and $ab \in P$ then either $a \in P$ or $b \in P$.

The following proposition says that a commutative ring satisfies the cancellation law if and only if R has no zero divisors except 0.

Proposition 1.71. Let R be a commutative ring. Then R satisfies

If $a, b, c \in R$ and $c \neq 0$ and ac = bc then a = b,

if and only if R satisfies

if
$$a, b \in R$$
 and $ab = 0$ then either $a = 0$ or $b = 0$.

Theorem 1.72. Let R be a commutative ring and let P be an ideal of R. Then

R/P is an integral domain if and only if P is a prime ideal.

HW:. Show that every field is an integral domain.

HW:. Show that every maximal ideal is prime.

HW: So that the ideal $x\mathbb{Z}[x]$ in $\mathbb{Z}[x]$ is a prime ideal that is not maximal.