1.16 Lecture 14: Fields and Integral Domains

1.16.1 R / M is a field $\Longleftrightarrow M$ is a maximal ideal.

Definition.

- A field is a commutative ring F such that if $x \in F$ and $x \neq 0$ then there exists an element $x^{-1} \in F$ such that $x x^{-1}=1$.
- A maximal ideal is an ideal M of a ring R such that
(a) $M \neq R$,
(b) If N is an ideal of R and $M \subsetneq P$ then $P=R$.

Lemma 1.69. Let F be a commutative ring. Then F is a field if and only if the only ideals of F are $\{0\}$ and F.

Theorem 1.70. Let R be a commutative ring and let M be an ideal of R. Then

$$
R / M \text { is a field if and only if } \quad M \text { is a maximal ideal. }
$$

1.16.2 R / P is an integral domain $\Longleftrightarrow P$ is a prime ideal.

Definition.

- An integral domain is a commutative ring R such that
(Cancellation law) if $a, b, c \in R$ and $c \neq 0$ and $a c=b c$ then $a=b$.
- A prime ideal is an ideal P in a commutative ring R such that if $a, b \in R$ and $a b \in P$ then either $a \in P$ or $b \in P$.

The following proposition says that a commutative ring satisfies the cancellation law if and only if R has no zero divisors except 0 .

Proposition 1.71. Let R be a commutative ring. Then R satsifies

$$
\text { If } a, b, c \in R \text { and } c \neq 0 \text { and } a c=b c \text { then } a=b
$$

if and only if R satisfies

$$
\text { if } a, b \in R \text { and } a b=0 \text { then either } a=0 \text { or } b=0 \text {. }
$$

Theorem 1.72. Let R be a commutative ring and let P be an ideal of R. Then

$$
R / P \text { is an integral domain if and only if } P \text { is a prime ideal. }
$$

HW:. Show that every field is an integral domain.
HW:. Show that every maximal ideal is prime.
HW: So that the ideal $x \mathbb{Z}[x]$ in $\mathbb{Z}[x]$ is a prime ideal that is not maximal.

