6.3 Polynomial Rings

Definition. Let A be a commutative ring and for $i \in \mathbb{Z}_{>0}$ let x^i be a formal symbol.

• A polynomial with coefficients in A is an expression of the form

$$a(x) = a_0 + r_1 x + a_2 x^2 + \cdots$$

such that

- (a) if $i \in \mathbb{Z}_{>0}$ then $a_i \in \mathbb{A}$,
- (b) There exists $N \in \mathbb{Z}_{>0}$ such that if $i \in \mathbb{Z}_{>N}$ then $a_i = 0$.
- Polynomials $f(x) = r_0 + r_1 x + r_2 x^2 + \cdots$ and $g(x) = s_0 + s_1 x + s_2 x^2 + \cdots$ with coefficients in R are

equal if
$$r_i = s_i$$
 for $i \in \mathbb{Z}_{\geq 0}$.

- The zero polynomial is the polynomial $0 = 0 + 0x + 0x^2 + \cdots$.
- The degree deg (f(x)) of a polynomial $f(x) = a_0 + a_1x + a_2x^2 + \cdots$ with coefficients in A is

the smallest $N \in \mathbb{Z}_{\geq 0}$ such that $a_N \neq 0$ and $a_k = 0$ for $k \in \mathbb{Z}_{>N}$.

If $f(x) = 0 + 0x + 0x^2 + \cdots$ then define deg (f(x)) = 0.

• Let A be a commutative ring. The **ring of polynomials with coefficients in** A is the set A[x] of polynomials with coefficients in A with the operations of addition and multiplication defined as follows:

If $f(x), g(x) \in \mathbb{A}[x]$ with

$$f(x) = r_0 + r_1 x + r_2 x^2 + \cdots$$
 and $g(x) = s_0 + s_1 x + s_2 x^2 + \cdots$,

then

$$f(x) + g(x) = (r_0 + s_0) + (r_1 + s_1)x + (r_2 + s_2)x^2 + \cdots, \text{ and}$$

$$f(x)g(x) = c_0 + c_1x + c_2x^2 + \cdots, \text{ where } c_k = \sum_{i+j=k} r_i s_j.$$

Proposition 6.9.

(a) Let R, S be commutative rings and let $\varphi \colon R \to S$ be a ring homomorphism. Then the function

$$\psi \colon R[x] \longrightarrow S[x]$$

$$r_0 + r_1 x + r_2 x^2 + \cdots \longmapsto \varphi(r_0) + \varphi(r_1) x + \varphi(r_2) x^2 + \cdots$$

is a ring homomorphism.

(b) Let R be a commutative ring and let $\alpha \in R$. Then the evaluation homomorphism

$$\begin{array}{cccc} \operatorname{ev}_{\alpha} \colon & & R[x] & \to & R \\ & & r_0 + r_1 x + \cdots r_d x^d & \mapsto & r_0 + r_1 \alpha + \cdots + r_d \alpha^d \end{array} \quad is \ a \ ring \ homomorphism$$