6.3 Polynomial Rings

Definition. Let \mathbb{A} be a commutative ring and for $i \in \mathbb{Z}_{>0}$ let x^{i} be a formal symbol.

- A polynomial with coefficients in \mathbb{A} is an expression of the form

$$
a(x)=a_{0}+r_{1} x+a_{2} x^{2}+\cdots
$$

such that
(a) if $i \in \mathbb{Z}_{\geq 0}$ then $a_{i} \in \mathbb{A}$,
(b) There exists $N \in \mathbb{Z}_{>0}$ such that if $i \in \mathbb{Z}_{>N}$ then $a_{i}=0$.

- Polynomials $f(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots$ and $g(x)=s_{0}+s_{1} x+s_{2} x^{2}+\cdots$ with coefficients in R are

$$
\text { equal if } \quad r_{i}=s_{i} \text { for } i \in \mathbb{Z}_{\geq 0} .
$$

- The zero polynomial is the polynomial $0=0+0 x+0 x^{2}+\cdots$.
- The degree deg $(f(x))$ of a polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ with coefficients in \mathbb{A} is

$$
\text { the smallest } N \in \mathbb{Z}_{\geq 0} \text { such that } a_{N} \neq 0 \text { and } a_{k}=0 \text { for } k \in \mathbb{Z}_{>N} .
$$

If $f(x)=0+0 x+0 x^{2}+\cdots$ then define $\operatorname{deg}(f(x))=0$.

- Let \mathbb{A} be a commutative ring. The ring of polynomials with coefficients in \mathbb{A} is the set $\mathbb{A}[x]$ of polynomials with coefficients in \mathbb{A} with the operations of addition and multiplication defined as follows:
If $f(x), g(x) \in \mathbb{A}[x]$ with

$$
f(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots \quad \text { and } \quad g(x)=s_{0}+s_{1} x+s_{2} x^{2}+\cdots,
$$

then

$$
\begin{aligned}
f(x)+g(x) & =\left(r_{0}+s_{0}\right)+\left(r_{1}+s_{1}\right) x+\left(r_{2}+s_{2}\right) x^{2}+\cdots, \quad \text { and } \\
f(x) g(x) & =c_{0}+c_{1} x+c_{2} x^{2}+\cdots, \quad \text { where } \quad c_{k}=\sum_{i+j=k} r_{i} s_{j} .
\end{aligned}
$$

Proposition 6.9.

(a) Let R, S be commutative rings and let $\varphi: R \rightarrow S$ be a ring homomorphism. Then the function

$$
\begin{array}{ccc}
\psi: R[x] & \longrightarrow & S[x] \\
r_{0}+r_{1} x+r_{2} x^{2}+\cdots & \longmapsto & \longmapsto\left(r_{0}\right)+\varphi\left(r_{1}\right) x+\varphi\left(r_{2}\right) x^{2}+\cdots
\end{array}
$$

is a ring homomorphism.
(b) Let R be a commutative ring and let $\alpha \in R$. Then the evaluation homomorphism

$$
\begin{array}{cccc}
\mathrm{ev}_{\alpha}: & R[x] & \rightarrow & R \\
r_{0}+r_{1} x+\cdots r_{d} x^{d} & \mapsto & r_{0}+r_{1} \alpha+\cdots+r_{d} \alpha^{d}
\end{array} \quad \text { is a ring homomorphism. }
$$

