2.30 Proof that perfect fields give no repeated roots

Theorem 2.36. Let \mathbb{F} be a field. The field

$$\mathbb{F}$$
 is perfect

if and only if \mathbb{F} satisfies

if $f(x) \in \mathbb{F}[x]$ and f(x) is irreducible then f(x) has no repeated roots.

Proof. \Rightarrow : Assume \mathbb{F} is perfect and let $m(x) \in \mathbb{F}[x]$. To show: If $m(x) \in \mathbb{F}[x]$ has a repeated root then m(x) is not irreducible. Assume $\alpha \in \overline{\mathbb{F}}$ is a repeated root of m(x). Then

$$m(x) = (x - \alpha)^2 n(x)$$
 and $m'(x) = \frac{dm}{dx} = (x - \alpha)^2 \frac{dn}{dx} + 2(x - \alpha)n(x),$

giving that $m'(\alpha) = 0$.

Case $m'(x) \neq 0$: Since deg(m'(x)) < m(x) then m(x) is not the minimal polynomial of α . So m(x) is a multiple of $m_{\alpha,\mathbb{F}}(x)$.

So m(x) is not irreducible.

Case m'(x) = 0 and $char(\mathbb{F}) = 0$. Then deg(m(x)) = 0. So m(x) is not irreducible. **Case** m'(x) = 0 and $char(\mathbb{F}) = p$ with p > 0. Then $m(x) = x^{kp} + c_{k-1}x^{(k-1)p} + \dots + c_1x^p + c_0$. Let $b_{k-1} = F^{-1}(c_{k-1}), \dots, b_0 = F^{-1}(c_0)$. Then

$$m(x) = x^{kp} + F(b_{k-1})x^{(k-1)p} + \dots + F(b_1)x^p + F(b_0)$$

= $x^{kp} + b_{k-1})^p x^{(k-1)p} + \dots + b_1^p x^p + b_0^p$
= $(x^k + b_{k-1}x^{k-1} + \dots + b_1x + b_0)^p$.

So m(x) is not irreducible.

 \Leftarrow : Assume \mathbb{F} is not perfect and $p = \operatorname{char}(\mathbb{F}) \in \mathbb{Z}_{>0}$. To show: There exists $f(x) \in \mathbb{F}[x]$ such that f(x) is irreducible and f(x) has a multiple root. Since \mathbb{F} is not perfect then there exists $\alpha \in \mathbb{F}$ such that $\alpha^{1/p} \notin \mathbb{F}$. Let

 $f(x) = m_{\alpha,\mathbb{F}}(x) = x^p - \alpha$ be the minimal polynomial of α over \mathbb{F} .

Since f(x) is the minimal polynomial of α over \mathbb{F} then f(x) is irreducible. Since $f(x) = x^p - \alpha = (x - \alpha^{1/p})^p$ then f(x) has a multiple root.