2.30 Proof that perfect fields give no repeated roots

Theorem 2.36. Let \mathbb{F} be a field. The field

\mathbb{F} is perfect

if and only if \mathbb{F} satisfies

$$
\text { if } f(x) \in \mathbb{F}[x] \text { and } f(x) \text { is irreducible then } f(x) \text { has no repeated roots. }
$$

Proof. \Rightarrow : Assume \mathbb{F} is perfect and let $m(x) \in \mathbb{F}[x]$.
To show: If $m(x) \in \mathbb{F}[x]$ has a repeated root then $m(x)$ is not irreducible.
Assume $\alpha \in \overline{\mathbb{F}}$ is a repeated root of $m(x)$.
Then

$$
m(x)=(x-\alpha)^{2} n(x) \quad \text { and } \quad m^{\prime}(x)=\frac{d m}{d x}=(x-\alpha)^{2} \frac{d n}{d x}+2(x-\alpha) n(x)
$$

giving that $m^{\prime}(\alpha)=0$.

Case $m^{\prime}(x) \neq 0$: Since $\operatorname{deg}\left(m^{\prime}(x)\right)<m(x)$ then $m(x)$ is not the minimal polynomial of α.
So $m(x)$ is a multiple of $m_{\alpha, \mathbb{F}}(x)$.
So $m(x)$ is not irreducible.
Case $m^{\prime}(x)=0$ and $\operatorname{char}(\mathbb{F})=0$. Then $\operatorname{deg}(m(x))=0$. So $m(x)$ is not irreducible.
Case $m^{\prime}(x)=0$ and $\operatorname{char}(\mathbb{F})=p$ with $p>0$. Then $m(x)=x^{k p}+c_{k-1} x^{(k-1) p}+\cdots+c_{1} x^{p}+c_{0}$. Let $b_{k-1}=F^{-1}\left(c_{k-1}\right), \ldots, b_{0}=F^{-1}\left(c_{0}\right)$.
Then

$$
\begin{aligned}
m(x) & =x^{k p}+F\left(b_{k-1}\right) x^{(k-1) p}+\cdots+F\left(b_{1}\right) x^{p}+F\left(b_{0}\right) \\
& \left.=x^{k p}+b_{k-1}\right)^{p} x^{(k-1) p}+\cdots+b_{1}^{p} x^{p}+b_{0}^{p} \\
& =\left(x^{k}+b_{k-1} x^{k-1}+\cdots+b_{1} x+b_{0}\right)^{p} .
\end{aligned}
$$

So $m(x)$ is not irreducible.
\Leftarrow : Assume \mathbb{F} is not perfect and $p=\operatorname{char}(\mathbb{F}) \in \mathbb{Z}_{>0}$.
To show: There exists $f(x) \in \mathbb{F}[x]$ such that $f(x)$ is irreducible and $f(x)$ has a multiple root.
Since \mathbb{F} is not perfect then there exists $\alpha \in \mathbb{F}$ such that $\alpha^{1 / p} \notin \mathbb{F}$.
Let

$$
f(x)=m_{\alpha, \mathbb{F}}(x)=x^{p}-\alpha \quad \text { be the minimal polynomial of } \alpha \text { over } \mathbb{F} .
$$

Since $f(x)$ is the minimal polynomial of α over \mathbb{F} then $f(x)$ is irreducible.
Since $f(x)=x^{p}-\alpha=\left(x-\alpha^{1 / p}\right)^{p}$ then $f(x)$ has a multiple root.

