2.19Proof that Euclidean domains are PIDs

Theorem 2.24. A Euclidean domain is a principal ideal domain.

Proof. Assume R is a Euclidean domain with size function $\sigma: (R - \{0\}) \to \mathbb{Z}_{>0}$. Let I be an ideal of R. To show: There exists $a \in R$ such that I = aR. Case 1: $I = \{0\}$. Then I = 0R. Case 2: $I \neq \{0\}$.

Let $a \in I$, $a \neq 0$, such that $\sigma(a)$ is as small as possible. To show: I = aR.

To show: (a) $I \subseteq aR$. (b) $aR \subseteq I$.

(a) Let $b \in I$.

To show: $b \in (a)$. Then there exist $q, r \in R$ such that b = aq + r where either r = 0 or $\sigma(r) < \sigma(a)$. Since r = b - aq and $b \in I$ and $a \in I$ then $r \in I$. Since $a \in I$ is such that $\sigma(a)$ is as small as possible we cannot have $\sigma(r) < \sigma(a)$. So r = 0. So b = aq. So $b \in aR$. So $I \subseteq aR$. (b) To show: $aR \subseteq I$. Since $a \in I$ then $aR \subseteq I$.

So
$$I = aR$$
.

So every ideal I of R is a principal ideal.

So R is a principal ideal domain.

2.20Proof that PIDs satisfy ACC

Proposition 2.25. Let \mathbb{A} be a PID. Then \mathbb{A} satisfies ACC.

Proof. Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain of ideals in A. To show: There exists $k \in \mathbb{Z}_{>0}$ and $n \in \mathbb{Z}_{>k}$ then $J_n = J_k$. Let

$$I_{\mathrm{un}} = \bigcup_{j \in \mathbb{Z}_{>0}} I_j$$

Then I_{un} is an ideal of \mathbb{A} . Since \mathbb{A} is a PID then there exists $d \in \mathbb{A}$ such that $I_{un} = d\mathbb{A}$. To show: There exists $k \in \mathbb{Z}_{>0}$ and $n \in \mathbb{Z}_{>k}$ then $I_n = I_k$. Let $k \in \mathbb{Z}_{>0}$ such that $d \in I_k$. To show: If $n \in \mathbb{Z}_{>k}$ then $I_n = I_k$. Assume $n \in \mathbb{Z}_{>k}$. Then

$$I_k \subseteq I_n \subseteq I_{\mathrm{un}} = d\mathbb{A} \subseteq I_k.$$

So $I_n = I_k$. So A satisfies ACC.