2.2 Proof that the poset of R-modules is a modular lattice

Proposition 2.2. Let R be a ring and let M be an R-module. Let N be an R-submodule of M. Define

$$
\mathcal{S}_{[N, M]}=\{P \mid N \subseteq P \subseteq M \text { are } R \text {-module inclusions }\} \quad \text { partially ordered by inclusion. }
$$

For $P, Q \in \mathcal{S}_{[N, M]}$, define

$$
P+Q=\{p+q \mid p \in P \text { and } q \in Q\} \quad \text { and } \quad P \cap Q=\{m \in M \mid m \in P \text { and } m \in Q\}
$$

(a) Let $P, Q \in \mathcal{S}_{[N, M]}$. Then

$$
P+Q=\sup (P, Q) \quad \text { and } \quad P \cap Q=\inf (P, Q) .
$$

(b) (modular law) If $L, P, Q \in \mathcal{S}_{[N, M]}$ and $P \subseteq Q$ then $Q+(L \cap P)=(Q+L) \cap P$.

Proof.
(a) To show: (aa) $P \subseteq P+Q$ and $Q \subseteq P+Q$.
(ab) If $L \in \mathcal{S}_{[N, M]}$ and $P \subseteq L$ and $Q \subseteq L$ then $P+Q \subseteq L$.
(ac) $P \cap Q \subseteq P$ and $P \cap Q \subseteq Q$.
(ad) If $K \in \mathcal{S}_{[N, M]}$ and $K \subseteq P$ and $K \subseteq Q$ then $K \subseteq P \cap Q$.
(b) To show: If $P \subseteq Q$ then $Q \cap(P+L)=P+(Q \cap L)$. Assume $P \subseteq Q$.

To show: $Q \cap(P+L)=P+(Q \cap L)$.
To show: (ba) $Q \cap(P+L) \subseteq P+(Q \cap L)$.
To show: (bb) $P+(Q \cap L) \subseteq Q \cap(P+L)$.
(ba) Assume $a \in Q \cap(P+L)$.
To show: $a \in P+(Q \cap L)$.
So there exist $p \in P$ and $\ell \in L$ such that $a=p+\ell$.
Since $a \in Q$ and $p \in Q$ then $\ell=a-p \in Q$.
So $\ell \in Q \cap L$.
So $a=p+\ell \in P+(Q \cap L)$.
So $Q \cap(P+L) \subseteq P+(Q \cap L)$.
(bb) Assume $b \in P+(Q \cap L)$.
To show: $b \in Q \cap(P+L)$
Since $b \in P+(Q \cap L)$ then there exist $p \in P$ and $\ell \in Q \cap L$ such that $b=p+\ell$.
Since $P \subseteq Q$ then $p \in Q$.
So $b=p+\ell \in Q \cap(P+L)$.
So $P+(Q \cap L) \subseteq Q \cap(P+L)$.
$P+(Q \cap L)=Q \cap(P+L)$.

