1.6 Lecture 6. Möbuis transformations and algebraic number fields

1.6.1 Möbuis transformations

The ring $\mathbb{C}[\epsilon]$ of polynomials in a variable ϵ with coefficients in \mathbb{C} has field of fractions

$$
\mathbb{C}(\epsilon)=\left\{\left.\frac{f(\epsilon)}{g(\epsilon)} \right\rvert\, f(\epsilon), g(\epsilon) \in \mathbb{C}(\epsilon) \text { with } g(\epsilon)\right\} \quad \text { with } \quad \frac{a(\epsilon)}{b(\epsilon)}=\frac{c(\epsilon)}{d(\epsilon)} \quad \text { if } \quad a(\epsilon) d(\epsilon)=b(\epsilon) c(\epsilon)
$$

The group of 2×2 invertible matrices with entries from \mathbb{C} is

$$
G L_{2}(\mathbb{C})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2 \times 2}(\mathbb{C}) \right\rvert\, a d-b c \neq 0\right\}
$$

Proposition 1.13. The map given by

$$
\begin{array}{rlcccc}
G L_{2}(\mathbb{C}) & \longrightarrow & \operatorname{Aut}_{\mathbb{C}}(\mathbb{C}(\epsilon)) & & \begin{array}{c}
\sigma_{a b}: \mathbb{C}(\epsilon) \\
c d
\end{array} & \longrightarrow
\end{array} \mathbb{C}(\epsilon)
$$

is a group homomorphism.

1.6.2 Examples of algebraic number fields

Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q}.

- An algebraic number is an element of \bar{Q}.
- An algebraic number field is a finite extension of \mathbb{Q}.

Let $f(x) \in \mathbb{Q}(x)$ and let where $\alpha_{1}, \ldots, \alpha_{k} \in \overline{\mathbb{Q}}$ are the roots of $f(x)$ so that

$$
f(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{k}\right), \quad \text { in } \overline{\mathbb{Q}}[x] .
$$

- The discriminant of $f(x)$ is D^{2}, where

$$
D=\prod_{1 \leq i<j \leq k}\left(\alpha_{i}-\alpha_{k}\right)
$$

Let \mathbb{K} be the splitting field of $f(x) \in \mathbb{Q}[x]$. If $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(\mathbb{K})$ then σ is a permutation of the roots of $f(x)$ and

$$
\sigma \cdot D=(-1)^{\ell(\sigma)} D \quad \text { so that } \quad \sigma D^{2}=D^{2}
$$

Thus D^{2} is fixed by $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{K})$ and $D^{2} \in \mathbb{Q}$.

- If $D \notin \mathbb{Q}$ then the minimal polynomial of $x^{2}-D^{2}$ is and $\mathbb{Q}(D)$ is a degree two extension of \mathbb{Q}.
- If $D \in \mathbb{Q}$ then $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{K}) \subseteq A_{n}$, where A_{n} is the alternating group.

Example 1. If $f(x)=x^{2}+b x+c$ is an irreducible polynoimal in $\mathbb{Q}[x]$ and

$$
f(x)=x^{2}+b x+c=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \in \overline{\mathbb{Q}}[x] \quad \text { then } \quad \mathbb{Q}\left(\alpha_{1}\right)=\mathbb{Q}\left(\alpha_{2}\right)
$$

since $\alpha_{1}=b-\alpha_{2}$. If $\sigma \in \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left(\alpha_{1}\right)\right)$ is the element given by

$$
\sigma\left(\alpha_{1}\right)=\alpha_{2}, \quad \text { then } \quad \sigma\left(\alpha_{2}\right)=\alpha_{1},
$$

since $\alpha_{2}+\sigma \alpha_{2}=\sigma\left(\alpha_{1}+\alpha_{2}\right)=\sigma(b)=b=\alpha_{1}+\alpha_{2}$. So

$$
\operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}\left(\alpha_{1}\right)\right)=\{1, \sigma\} \cong \mathbb{Z} / 2 \mathbb{Z}=S_{2} .
$$

The discriminant

$$
D^{2}=b^{2}-4 c \in \mathbb{Q} \quad \text { and } \quad D=\sqrt{b^{2}-4 c} \quad \text { and } \quad D \in Q\left(\alpha_{1}\right) .
$$

So $\mathbb{Q}\left(\alpha_{1}\right)=\mathbb{Q}(D)$ and $\sigma D=-D$.
Example 2.. Let $f(x)=x^{3}+a_{2} x^{2}+a_{2} x+a_{0}$. Change variable $x=y-\frac{1}{3} a_{2}$. Then

$$
f(x)=y^{3}-a_{2} y^{2}+\frac{3 y a_{2}^{2}}{9}-\frac{a_{2}^{3}}{27}+a_{2} y^{2}-\frac{2 a_{2}}{3} y+\frac{a_{2}^{3}}{9}+a_{1} y-\frac{a_{1} a_{2}}{3}+a_{0} .
$$

So assume that $f(x)=x^{3}+b x+c$ and let \mathbb{K} be the splitting field of $f(x)$. If $f(x)$ is separable and irreducible then

$$
D^{2}=-4 b^{3}-27 c^{2} \quad \text { and } \quad \text { Aut }_{\mathbb{Q}}(\mathbb{K})= \begin{cases}S_{3}, & \text { if } D \notin \mathbb{Q}, \\ \mathbb{Z} / 3 \mathbb{Z}, & \text { if } D \in \mathbb{Q} .\end{cases}
$$

If $f(x)=x^{3}+b x+c=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$ then

$$
\begin{aligned}
& -c=e_{3}=\alpha_{1} \alpha_{2} \alpha_{3}=-c, \\
& b=e_{2}=\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}, \\
& 0=e_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3} \text {, }
\end{aligned}
$$

and the Hasse diagrams of the posets in the Galois correspondence are

A concrete example is $f(x)=x^{3}-2$ which has roots $2^{\frac{1}{3}}, 2^{\frac{1}{3}} \omega, 2^{\frac{1}{3}} \omega^{2}$, where $\omega=e^{2 \pi i / 3}$ is a primitive cube root of unity and

$$
\operatorname{Aut}_{\mathbb{Q}}(\mathbb{K})=S_{3} \quad \text { and } \quad D=\sqrt{-27 \cdot 4}=6 \sqrt{3} i .
$$

Examples of the two cases are

$$
\begin{array}{ll}
f(x)=x^{3}-3 x+1, & \text { which has } D=\sqrt{81}=9, \quad \text { and } \\
f(x)=x^{3}+3 x+1, & \text { which has } D=\sqrt{-135}=3 \sqrt{15 i} i
\end{array}
$$

Example 4.. Let $f(x)=x^{4}+1$ which has roots $\omega, \omega^{3}, \omega^{5}, \omega^{7}$, where $\omega=e^{2 \pi i / 8}$. Let \mathbb{K} be the splitting field of $f(x)$ over \mathbb{Q}. Then

$$
\text { Aut }_{\mathbb{Q}}(\mathbb{K}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \quad \text { the Klein four group. }
$$

Let $a, b \in \mathbb{Q}$ and let $\mathbb{K}=\mathbb{Q}(\sqrt{a}, \sqrt{b})$, which is the splitting field of

$$
f(x)=\left(x^{2}-a\right)\left(x^{2}-b\right)=x^{4}-(a+b) x^{2}+a b .
$$

Then

$$
\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt{a}, \sqrt{b})) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z},
$$

generated by $\sigma: \mathbb{K} \rightarrow \mathbb{K}$ and $\tau: \mathbb{K} \rightarrow \mathbb{K}$ where

$$
\begin{aligned}
& \sigma(\sqrt{a})=-\sqrt{a}, \\
& \sigma(\sqrt{b})=\sqrt{b},
\end{aligned} \quad \text { and } \quad \begin{aligned}
& \tau(\sqrt{a})=\sqrt{a}, \\
& \tau(\sqrt{b})=-\sqrt{b},
\end{aligned}
$$

The Hasse diagrams of the posets in the Galois correspondence are

Here, $\mathbb{Q}(\sqrt{a}, \sqrt{b})=\mathbb{Q}(\sqrt{a}+\sqrt{b})$ since $(\sqrt{a}+\sqrt{b})^{2}=a+2 \sqrt{a} \sqrt{b}+b \in \mathbb{Q}(\sqrt{a}+\sqrt{b})$ and so $(\sqrt{a b})(\sqrt{a}+$ $\sqrt{b})=(a \sqrt{b}+b \sqrt{a}) \in \mathbb{Q}(\sqrt{a}+\sqrt{b})$. So $(b-a) \sqrt{a} \in \mathbb{Q}(\sqrt{a}+\sqrt{b})$.

Example 5. Let $f(x)=x^{n}-1$. The polynomial $f(x)$ has roots $1, \omega, \omega^{1}, \ldots, \omega^{n-1}$, where $\omega=e^{2 \pi i / n}$. Let \mathbb{K} be the splitting field of $f(x)$ over \mathbb{Q}. Then

$$
\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\omega)) \cong(\mathbb{Z} / n \mathbb{Z})^{\times} \quad \text { and } \quad \operatorname{Card}\left((\mathbb{Z} / n \mathbb{Z})^{\times}\right)=\phi(n),
$$

where $\phi(n)$ is Euler's phi function.

Example 6. Assume \mathbb{F} contains a primitive nth root of unity and let \mathbb{K} be a finite Galois extension of \mathbb{F}. Then

$$
\operatorname{Aut}_{\mathbb{F}}(\mathbb{K}) \cong \mathbb{Z} / n \mathbb{Z} \quad \text { if and only if }
$$

there exists $b \in \mathbb{F}$ such that $x^{n}-b \in \mathbb{F}[x]$ is irreducible and \mathbb{K} is the splitting field of $x^{n}-b$

Example 7. Assume $\mathbb{F}=\mathbb{E}\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbb{K}=\mathbb{E}\left(e_{1}, \ldots, e_{n}\right)$, where e_{1}, \ldots, e_{n} are the elementary symmetric functions in x_{1}, \ldots, x_{n}. Then

$$
\mathbb{K} \text { is the splitting field of } \quad f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) \in \mathbb{F}[x],
$$

and

$$
\operatorname{Aut}_{\mathbb{F}}(\mathbb{K}) \cong S_{n} .
$$

