1.10 Lecture 10: Simple and indecomposable modules and torsion submodules

1.10.1 The Krull-Schmidt theorem

Theorem 1.29. Let \mathbb{A} be a PID and let M be a finitely generated \mathbb{A} module. Then there exist $k, \ell \in \mathbb{Z}_{\geq 0}$ and $d_{1}, \ldots, d_{k} \in \mathbb{A}$ such that

$$
M \cong \frac{\mathbb{A}}{d_{1} \mathbb{A}} \oplus \cdots \oplus \frac{\mathbb{A}}{d_{k} \mathbb{A}} \oplus \mathbb{A}^{\oplus \ell}
$$

Special cases of $\mathbb{A} / d \mathbb{A}$ are

$$
\frac{\mathbb{A}}{0 \mathbb{A}}=\mathbb{A} \quad \text { and } \quad \text { if } u \in \mathbb{A}^{\times} \text {then } \quad \frac{\mathbb{A}}{u \mathbb{A}}=\frac{\mathbb{A}}{\mathbb{A}}=0
$$

Theorem 1.30. (Chinese remainder theorem) Let \mathbb{A} be a PID and let $d \in \mathbb{A}$.

$$
\text { Assume } d=p q \text { with } \operatorname{gcd}(p, q)=1 . \quad \text { Then } \quad \frac{\mathbb{A}}{d \mathbb{A}} \cong \frac{\mathbb{A}}{p \mathbb{A}} \oplus \frac{\mathbb{A}}{q \mathbb{A}} \text {. }
$$

Theorem 1.31. (Krull-Schmidt) Let \mathbb{A} be a PID and let M be a finitely generated \mathbb{A}-module. Then there exist $r, \ell \in \mathbb{Z}_{>0}$ and indecomposable \mathbb{A}-modules $\mathbb{A} / p_{1}^{k_{1}} \mathbb{A}, \ldots, \mathbb{A} / p_{\ell}^{k_{\ell}} \mathbb{A}$ such that

$$
M \cong \mathbb{A}^{\oplus r} \oplus \frac{\mathbb{A}}{p_{1}^{k_{1}} \mathbb{A}} \oplus \cdots \oplus \frac{\mathbb{A}}{p_{\ell}^{k_{\ell}} \mathbb{A}} .
$$

1.10.2 Simple and indecomposable modules

Let R be a ring and let M be an R-module.

- The \mathbb{A}-module M is indecomposable if
there do not exist submodules N and P of M such that $M=N \oplus P$.
- The R-module M is simple if the only submodules of M are 0 and M.
- A finite composition series of M is a chain of submodules

$$
0=M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{n}=M \quad \text { such that } M_{i} / M_{i+1} \text { is simple and } n \in \mathbb{Z}_{>0} .
$$

Theorem 1.32. Let \mathbb{A} be a PID.
(a) There is a bijection

$$
\{\text { simple } \mathbb{A} \text {-modules }\} \quad \longleftrightarrow \text { \{maximal ideals }\}
$$

(b) There is a bijection

$$
\begin{array}{ccc}
\left\{\begin{array}{c}
\text { indecomposable } \\
\frac{\mathbb{A}}{p^{\mathbb{A}}} \\
\mathbb{A}
\end{array}\right) & \longleftrightarrow & \left\{(p \mathbb{A}, k) \mid p \mathbb{A} \text { is a maximal ideal and } k \in \mathbb{Z}_{>0}\right\} \\
(p \mathbb{A}, k)
\end{array}
$$

(c) Let $p \mathbb{A}$ be a maximal ideal of \mathbb{A} and let $k \in \mathbb{Z}_{>0}$. The \mathbb{A}-module $\mathbb{A} / p^{k} \mathbb{A}$ has a unique composition series,

$$
\frac{\mathbb{A}}{p^{k} \mathbb{A}} \supseteq \frac{p \mathbb{A}}{p^{k} \mathbb{A}} \supseteq \cdots \supseteq \frac{p^{k-1} \mathbb{A}}{p^{k} \mathbb{A}} \supseteq \frac{p^{k} \mathbb{A}}{p^{k} \mathbb{A}}=0 .
$$

1.10.3 Free modules and torsion submodules

A integral domain is a commutative ring \mathbb{A} such that
(Cancellation law) If $a, b, c \in \mathbb{A}$ and $c \neq 0$ and $a c=b c$ then $a=b$.
Let R be a integral domain and let M be an R-module.

- The torsion submodule of M is

$$
\operatorname{Tor}(M)=\{m \in M \mid \text { there exists } a \in R \text { with } a \neq 0 \text { and } a m=0\}
$$

- The module M is free of finite rank if there exists $r \in \mathbb{Z}_{>0}$ such that $M \cong \mathbb{A}^{\oplus r}$.

Proposition 1.33. Let R be an integral domain and let M be an R-module.
(a) If M is an R-module then $\operatorname{Tor}(M)$ is an R-submodule of M.
(b) If M and N are R-modules then $\operatorname{Tor}(M \oplus N)=\operatorname{Tor}(M) \oplus \operatorname{Tor}(N)$.
(c) $\operatorname{Tor}(R)=0$.
(d) If $d \in R$ and $d \neq 0$ then $\operatorname{Tor}(R / d R)=R / d R$.

Proposition 1.34. Let \mathbb{A} be a PID. Assume that M is an \mathbb{A}-module and there exist $r, k \in \mathbb{Z}_{>0}$ and $d_{1}, \ldots, d_{k} \in(\mathbb{A}-\{0,1\}) / \mathbb{A}^{\times}$such that

$$
M \cong \mathbb{A}^{\oplus r} \oplus\left(\frac{\mathbb{A}}{d_{1} \mathbb{A}} \oplus \cdots \oplus \frac{\mathbb{A}}{d_{k} \mathbb{A}}\right) . \quad \text { Then } \quad \operatorname{Tor}(M) \cong \frac{\mathbb{A}}{d_{1} \mathbb{A}} \oplus \cdots \oplus \frac{\mathbb{A}}{d_{k} \mathbb{A}}
$$

Proposition 1.35. Let \mathbb{A} be a $P I D$. Let M be an \mathbb{A}-module and let N be an \mathbb{A}-submodule of M. If M is free of finite rank then N is free of finite rank.

