1.7 Lecture 7: Irreducible polynomials

Let $\mathbb F$ be a field.

• The group of units of ${\mathbb F}$ is

 $\mathbb{F}^{\times} = \{ a \in \mathbb{F} \mid \text{there eixsts } c \in \mathbb{F} \text{ with } ca = ac = 1 \}$

• The group of units of $\mathbb{F}[x]$ is

 $\mathbb{F}[x]^{\times} = \{f(x) \in \mathbb{F}[x] \mid \text{there eixsts } g(x) \in \mathbb{F}[]x] \text{ with } g(x)f(x) = f(x)g(x) = 1.\}$

HW:. Show that $\mathbb{F}^{\times} = \{a \in \mathbb{F} \mid a \neq 0\}.$

HW:. Show that $\mathbb{F}[x]^{\times} = \mathbb{F}^{\times}$.

Let $f(x) \in \mathbb{F}[x]$.

- The polynomial f(x) is **irreducible** if
 - (a) $f(x) \neq 0$,
 - (b) $f(x) \in \mathbb{F}[x]^{\times}$,
 - (c) There do not exist $g(x), h(x) \in \mathbb{F}[x]$ such that g(x)h(x) = f(x) and $g(x) \notin \mathbb{F}[x]^{\times}$ and $h(x) \notin \mathbb{F}[x]^{\times}$.
- The ideal generated by f(x) is the set of multiples of f(x),

$$f(x)\mathbb{F}[x] = \{f(x)g(x) \mid g(x) \in \mathbb{F}[x]\}.$$

• The ideal $f(x)\mathbb{F}[x]$ is a maximal ideal if there does not exist $g(x) \in \mathbb{F}[x]$ such that

$$f(x)\mathbb{F}[x] \subsetneq g(x)\mathbb{F}[x] \subsetneq \mathbb{F}[x].$$

Proposition 1.14. Let \mathbb{F} be a field and let $f(x) \in \mathbb{F}[x]$. The following are equivalent

(a) f(x) is irreducible in $\mathbb{F}[x]$, (b) $f(x)\mathbb{F}[x]$ is a maximal ideal, (c) $\frac{\mathbb{F}[x]}{f(x)\mathbb{F}[x]}$ is a field.

1.7.1 Comparing polynomials in $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$

Let $f(x) \in \mathbb{Z}[x]$. The polynomial

 $f(x) = c_0 + c_1 x + \dots + c_\ell x^\ell$ is **primitive** if $gcd(c_0, \dots, c_\ell) = 1$.

Proposition 1.15. Let $f(x) \in \mathbb{Z}[x]$. Then f(x) is irreducible in $\mathbb{Z}[x]$ if and only if

either $f(x) = \pm p$, where p is a prime integer, or f(x) is a primitive polynomial and f(x) is irreducible in $\mathbb{Q}[x]$.

1.7.2 Comparing polynomials in $\mathbb{Z}[x]$ and $\mathbb{F}_p[x]$

Proposition 1.16. Let $f(x) \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}_{>0}$ be prime. Let $\overline{f(x)}$ denote the image of f(x) in $\mathbb{F}_p[x]$.

If $\deg(\overline{f(x)}) = \deg(f(x) \text{ and } \overline{f(x)} \text{ is irreducible in } \mathbb{F}_p[x]$

then f(x) is irreducible in $\mathbb{Z}[x]$.

1.7.3 Primitive polynomials and Eisenstein's criterion

The polynomial

$$f(x) = c_0 + c_1 x + \dots + c_\ell x^\ell \in \mathbb{Z}[x]$$
 is **primitive** if $gcd(c_0, \dots, c_\ell) = 1$.

HW: Let $f(x) = c_0 + c_1 x + \dots + c_\ell x^\ell \in \mathbb{Z}[x]$. Show that f(x) is primitive if and only if f(x) satisfies:

if $p \in \mathbb{Z}_{>0}$ and p is prime then $\overline{f(x)} \neq 0$ in $\mathbb{F}_p[x]$.

The group of units of \mathbb{Z} is

 $\mathbb{Z}^{\times} = \{ a \in \mathbb{Z} \mid \text{there exists } b \in \mathbb{Z} \text{ such that } ab = ba = 1 \}.$

HW: Show that $\mathbb{Z}^{\times} = \{-1, 1\}.$

Theorem 1.17. Let $f(x) \in \mathbb{Z}[x]$.

(a) There exist

 $c \in \mathbb{Q}$ and a primitive $g(x) \in \mathbb{Z}[x]$ such that f(x) = cg(x).

(b) If $g'(x) \in \mathbb{Z}[x]$ is primitive and $c' \in \mathbb{Q}$ and f(x) = c'g'(x) then there exists $u \in \mathbb{Z}^{\times}$ such that

$$c' = u^{-1}c$$
 and $g'(x) = ug(x)$.

(c) If f(x) is irreducible in $\mathbb{Q}[x]$ then g(x) is irreducible in $\mathbb{Q}[x]$.

Proposition 1.18. (Eisenstein criterion) Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}_{>0}$ be a prime integer. Assume

- (a) p does not divide a_n ,
- (b) p divides each of $a_{n-1}, a_{n-2}, \ldots, a_0$,
- (c) p^2 does not divide a_0 ,

then f(x) is irreducible in $\mathbb{Z}[x]$.

Proof. Assume $p \in \mathbb{Z}_{>0}$ with p prime and $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$. Assume p does not divide a_n and p divides each of a_{n-1}, \dots, a_0 . To show: If p^2 does not divide a_0 then f(x) is irreducible in $\mathbb{Z}[x]$. To show: If f(x) is reducible in $\mathbb{Z}[x]$ then p^2 divides a_0 . Assume f(x) is reducible in $\mathbb{Z}[x]$. Then there exists $g(x), h(x) \in \mathbb{Z}[x]$ with f(x) = g(x)h(x) (and $g(x), h(x) \notin \{0, 1, -1\}$). Write $g(x) = g_k x^k + \dots + g_0$ and $h(x) = h_\ell x^\ell + \dots + h_0$. Letting $\bar{a} = a \mod p$ for $a \in \mathbb{Z}$, then

$$\overline{a_n}x^n = \overline{a_n}x^n + \dots + \overline{a_0} = \overline{f(x)} = \overline{g(x)h(x)} = (\overline{g_k}x^k + \dots + \overline{g_0})(\overline{h_\ell}x^\ell + \dots + \overline{h_0}).$$
(1.1)

Since the only factorization of $\overline{a_n}x^n$ in $\mathbb{F}_p[x]$ of the form (1.1) is $\overline{a_n}x^n = \overline{g_k}\overline{h_\ell}x^{k+\ell} = (\overline{g_k}x^k)(\overline{h_\ell}x^\ell)$ then

$$\overline{g_{k-1}} = \cdots \overline{g_0} = h_{\ell-1} = \cdots = h_0 = 0.$$

So both g_0 and h_0 are divisible by p.

Using the fact that \mathbb{Z} is a unique factorization domain then $a_0 = g_0 h_0$ is divisible by p^2 .