1.7 Lecture 7: Irreducible polynomials

Let \mathbb{F} be a field.

- The group of units of \mathbb{F} is

$$
\mathbb{F}^{\times}=\{a \in \mathbb{F} \mid \text { there eixsts } c \in \mathbb{F} \text { with } c a=a c=1\}
$$

- The group of units of $\mathbb{F}[x]$ is

$$
\left.\mathbb{F}[x]^{\times}=\{f(x) \in \mathbb{F}[x] \mid \text { there eixsts } g(x) \in \mathbb{F}[] x] \text { with } g(x) f(x)=f(x) g(x)=1 .\right\}
$$

HW:. Show that $\mathbb{F}^{\times}=\{a \in \mathbb{F} \mid a \neq 0\}$.
HW:. Show that $\mathbb{F}[x]^{\times}=\mathbb{F}^{\times}$.
Let $f(x) \in \mathbb{F}[x]$.

- The polynomial $f(x)$ is irreducible if
(a) $f(x) \neq 0$,
(b) $f(x) \in \mathbb{F}[x]^{\times}$,
(c) There do not exist $g(x), h(x) \in \mathbb{F}[x]$ such that $g(x) h(x)=f(x)$ and $g(x) \notin \mathbb{F}[x]^{\times}$and $h(x) \notin \mathbb{F}[x]^{\times}$.
- The ideal generated by $f(x)$ is the set of multiples of $f(x)$,

$$
f(x) \mathbb{F}[x]=\{f(x) g(x) \mid g(x) \in \mathbb{F}[x]\} .
$$

- The ideal $f(x) \mathbb{F}[x]$ is a maximal ideal if there does not exist $g(x) \in \mathbb{F}[x]$ such that

$$
f(x) \mathbb{F}[x] \subsetneq g(x) \mathbb{F}[x] \subsetneq \mathbb{F}[x] .
$$

Proposition 1.14. Let \mathbb{F} be a field and let $f(x) \in \mathbb{F}[x]$. The following are equivalent
(a) $f(x)$ is irreducible in $\mathbb{F}[x]$,
(b) $f(x) \mathbb{F}[x]$ is a maximal ideal,
(c) $\frac{\mathbb{F}[x]}{f(x) \mathbb{F}[x]}$ is a field.

1.7.1 Comparing polynomials in $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$

Let $f(x) \in \mathbb{Z}[x]$. The polynomial

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{\ell} x^{\ell} \quad \text { is primitive if } \quad \operatorname{gcd}\left(c_{0}, \ldots, c_{\ell}\right)=1 .
$$

Proposition 1.15. Let $f(x) \in \mathbb{Z}[x]$. Then $f(x)$ is irreducible in $\mathbb{Z}[x]$ if and only if
either $f(x)= \pm p$, where p is a prime integer,
or $f(x)$ is a primitive polynomial and $f(x)$ is irreducible in $\mathbb{Q}[x]$.
1.7.2 Comparing polynomials in $\mathbb{Z}[x]$ and $\mathbb{F}_{p}[x]$

Proposition 1.16. Let $f(x) \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}_{>0}$ be prime. Let $\overline{f(x)}$ denote the image of $f(x)$ in $\mathbb{F}_{p}[x]$.

$$
\begin{gathered}
\text { If } \operatorname{deg}(\overline{f(x)})=\operatorname{deg}\left(f(x) \text { and } \overline{f(x)} \text { is irreducible in } \mathbb{F}_{p}[x]\right. \\
\text { then } f(x) \text { is irreducible in } \mathbb{Z}[x] .
\end{gathered}
$$

1.7.3 Primitive polynomials and Eisenstein's criterion

The polynomial

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{\ell} x^{\ell} \in \mathbb{Z}[x] \quad \text { is primitive if } \quad \operatorname{gcd}\left(c_{0}, \ldots, c_{\ell}\right)=1
$$

$\mathbf{H W}$: Let $f(x)=c_{0}+c_{1} x+\cdots+c_{\ell} x^{\ell} \in \mathbb{Z}[x]$. Show that $f(x)$ is primitive if and only if $f(x)$ satisfies: if $p \in \mathbb{Z}_{>0}$ and p is prime then $\overline{f(x)} \neq 0$ in $\mathbb{F}_{p}[x]$.

The group of units of \mathbb{Z} is

$$
\mathbb{Z}^{\times}=\{a \in \mathbb{Z} \mid \text { there exists } b \in \mathbb{Z} \text { such that } a b=b a=1\} .
$$

$\mathbf{H W}$: Show that $\mathbb{Z}^{\times}=\{-1,1\}$.
Theorem 1.17. Let $f(x) \in \mathbb{Z}[x]$.
(a) There exist

$$
c \in \mathbb{Q} \text { and a primitive } g(x) \in \mathbb{Z}[x] \quad \text { such that } \quad f(x)=c g(x) \text {. }
$$

(b) If $g^{\prime}(x) \in \mathbb{Z}[x]$ is primitive and $c^{\prime} \in \mathbb{Q}$ and $f(x)=c^{\prime} g^{\prime}(x)$ then there exists $u \in \mathbb{Z}^{\times}$such that

$$
c^{\prime}=u^{-1} c \quad \text { and } \quad g^{\prime}(x)=u g(x)
$$

(c) If $f(x)$ is irreducible in $\mathbb{Q}[x]$ then $g(x)$ is irreducible in $\mathbb{Q}[x]$.

Proposition 1.18. (Eisenstein criterion) Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}_{>0}$ be a prime integer. Assume
(a) p does not divide a_{n},
(b) p divides each of $a_{n-1}, a_{n-2}, \ldots, a_{0}$,
(c) p^{2} does not divide a_{0},
then $f(x)$ is irreducible in $\mathbb{Z}[x]$.
Proof. Assume $p \in \mathbb{Z}_{>0}$ with p prime and $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$.
Assume p does not divide a_{n} and p divides each of a_{n-1}, \ldots, a_{0}.
To show: If p^{2} does not divide a_{0} then $f(x)$ is irreducible in $\mathbb{Z}[x]$.
To show: If $f(x)$ is reducible in $\mathbb{Z}[x]$ then p^{2} divides a_{0}.
Assume $f(x)$ is reducible in $\mathbb{Z}[x]$.
Then there exists $g(x), h(x) \in \mathbb{Z}[x]$ with $f(x)=g(x) h(x)($ and $g(x), h(x) \notin\{0,1,-1\})$.
Write $g(x)=g_{k} x^{k}+\cdots+g_{0}$ and $h(x)=h_{\ell} x^{\ell}+\cdots+h_{0}$.
Letting $\bar{a}=a \bmod p$ for $a \in \mathbb{Z}$, then

$$
\begin{equation*}
\overline{a_{n}} x^{n}=\overline{a_{n}} x^{n}+\cdots+\overline{a_{0}}=\overline{f(x)}=\overline{g(x) h(x)}=\left(\overline{g_{k}} x^{k}+\cdots+\overline{g_{0}}\right)\left(\overline{h_{\ell}} x^{\ell}+\cdots+\overline{h_{0}}\right) \tag{1.1}
\end{equation*}
$$

Since the only factorization of $\overline{a_{n}} x^{n}$ in $\mathbb{F}_{p}[x]$ of the form 1.1$)$ is $\overline{a_{n}} x^{n}=\overline{g_{k}} \overline{h_{\ell}} x^{k+\ell}=\left(\overline{g_{k}} x^{k}\right)\left(\overline{h_{\ell}} x^{\ell}\right)$ then

$$
\overline{g_{k-1}}=\cdots \overline{g_{0}}=\overline{h_{\ell-1}}=\cdots=\overline{h_{0}}=0
$$

So both g_{0} and h_{0} are divisible by p.
Using the fact that \mathbb{Z} is a unique factorization domain then $a_{0}=g_{0} h_{0}$ is divisible by p^{2}.

