1.7 Lecture 7: Irreducible polynomials

Let \mathbb{F} be a field.

• The group of units of ${\mathbb F}$ is

 $\mathbb{F}^{\times} = \{ a \in \mathbb{F} \mid \text{there eixsts } c \in \mathbb{F} \text{ with } ca = ac = 1 \}$

• The group of units of $\mathbb{F}[x]$ is

 $\mathbb{F}[x]^{\times} = \{f(x) \in \mathbb{F}[x] \mid \text{there eixsts } g(x) \in \mathbb{F}[]x] \text{ with } g(x)f(x) = f(x)g(x) = 1.\}$

HW:. Show that $\mathbb{F}^{\times} = \{a \in \mathbb{F} \mid a \neq 0\}.$

HW:. Show that $\mathbb{F}[x]^{\times} = \mathbb{F}^{\times}$.

Let $f(x) \in \mathbb{F}[x]$.

- The polynomial f(x) is **irreducible** if
 - (a) $f(x) \neq 0$,
 - (b) $f(x) \in \mathbb{F}[x]^{\times}$,
 - (c) There do not exist $g(x), h(x) \in \mathbb{F}[x]$ such that g(x)h(x) = f(x) and $g(x) \notin \mathbb{F}[x]^{\times}$ and $h(x) \notin \mathbb{F}[x]^{\times}$.
- The ideal generated by f(x) is

$$f(x)\mathbb{F}[x] = \{f(x)g(x) \mid g(x) \in \mathbb{F}[x]\}.$$

• The ideal $f(x)\mathbb{F}[x]$ is a maximal ideal if there does not exist $g(x) \in \mathbb{F}[x]$ such that

$$f(x)\mathbb{F}[x] \subsetneq g(x)\mathbb{F}[x] \subsetneq \mathbb{F}[x].$$

Proposition 1.14. Let \mathbb{F} be a field and let $f(x) \in \mathbb{F}[x]$. The following are equivalent

(a) f(x) is irreducible in $\mathbb{F}[x]$, (b) $f(x)\mathbb{F}[x]$ is a maximal ideal, (c) $\frac{\mathbb{F}[x]}{f(x)\mathbb{F}[x]}$ is a field.

1.7.1 Comparing polynomials in $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$

Let $f(x) \in \mathbb{Z}[x]$. The polynomial

 $f(x) = c_0 + c_1 x + \dots + c_\ell x^\ell$ is **primitive** if $gcd(c_0, \dots, c_\ell) = 1$.

Proposition 1.15. Let $f(x) \in \mathbb{Z}[x]$. Then f(x) is irreducible in $\mathbb{Z}[x]$ if and only if

either $f(x) = \pm p$, where p is a prime integer, or f(x) is a primitive polynomial and f(x) is irreducible in $\mathbb{Q}[x]$.

1.7.2 Comparing polynomials in $\mathbb{Z}[x]$ and $\mathbb{F}_p[x]$

Proposition 1.16. Let $f(x) \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}_{>0}$ be prime. Let $\overline{f(x)}$ denote the image of f(x) in $\mathbb{F}_p[x]$.

If $\deg(\overline{f(x)}) = \deg(f(x) \text{ and } \overline{f(x)} \text{ is irreducible in } \mathbb{F}_p[x]$

then f(x) is irreducible in $\mathbb{Z}[x]$.