### 1.7 Lecture 7: Irreducible polynomials

Let $\mathbb{F}$ be a field.

- The group of units of $\mathbb{F}$ is

$$
\mathbb{F}^{\times}=\{a \in \mathbb{F} \mid \text { there eixsts } c \in \mathbb{F} \text { with } c a=a c=1\}
$$

- The group of units of $\mathbb{F}[x]$ is

$$
\left.\mathbb{F}[x]^{\times}=\{f(x) \in \mathbb{F}[x] \mid \text { there eixsts } g(x) \in \mathbb{F}[] x] \text { with } g(x) f(x)=f(x) g(x)=1 .\right\}
$$

HW:. Show that $\mathbb{F}^{\times}=\{a \in \mathbb{F} \mid a \neq 0\}$.
HW:. Show that $\mathbb{F}[x]^{\times}=\mathbb{F}^{\times}$.
Let $f(x) \in \mathbb{F}[x]$.

- The polynomial $f(x)$ is irreducible if
(a) $f(x) \neq 0$,
(b) $f(x) \in \mathbb{F}[x]^{\times}$,
(c) There do not exist $g(x), h(x) \in \mathbb{F}[x]$ such that $g(x) h(x)=f(x)$ and $g(x) \notin \mathbb{F}[x]^{\times}$and $h(x) \notin \mathbb{F}[x]^{\times}$.
- The ideal generated by $f(x)$ is

$$
f(x) \mathbb{F}[x]=\{f(x) g(x) \mid g(x) \in \mathbb{F}[x]\} .
$$

- The ideal $f(x) \mathbb{F}[x]$ is a maximal ideal if there does not exist $g(x) \in \mathbb{F}[x]$ such that

$$
f(x) \mathbb{F}[x] \subsetneq g(x) \mathbb{F}[x] \subsetneq \mathbb{F}[x] .
$$

Proposition 1.14. Let $\mathbb{F}$ be a field and let $f(x) \in \mathbb{F}[x]$. The following are equivalent
(a) $f(x)$ is irreducible in $\mathbb{F}[x]$,
(b) $f(x) \mathbb{F}[x]$ is a maximal ideal,
(c) $\frac{\mathbb{F}[x]}{f(x) \mathbb{F}[x]}$ is a field.

### 1.7.1 Comparing polynomials in $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$

Let $f(x) \in \mathbb{Z}[x]$. The polynomial

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{\ell} x^{\ell} \quad \text { is primitive if } \quad \operatorname{gcd}\left(c_{0}, \ldots, c_{\ell}\right)=1 .
$$

Proposition 1.15. Let $f(x) \in \mathbb{Z}[x]$. Then $f(x)$ is irreducible in $\mathbb{Z}[x]$ if and only if
either $f(x)= \pm p$, where $p$ is a prime integer,
or $f(x)$ is a primitive polynomial and $f(x)$ is irreducible in $\mathbb{Q}[x]$.

### 1.7.2 Comparing polynomials in $\mathbb{Z}[x]$ and $\mathbb{F}_{p}[x]$

Proposition 1.16. Let $f(x) \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}_{>0}$ be prime. Let $\overline{f(x)}$ denote the image of $f(x)$ in $\mathbb{F}_{p}[x]$.

$$
\begin{gathered}
\text { If } \operatorname{deg}(\overline{f(x)})=\operatorname{deg}\left(f(x) \text { and } \overline{f(x)} \text { is irreducible in } \mathbb{F}_{p}[x]\right. \\
\text { then } f(x) \text { is irreducible in } \mathbb{Z}[x] .
\end{gathered}
$$

