6.7 The Galois correspondence

Let \mathbb{F} be a field.

- The automorphism group of \mathbb{F} is $\operatorname{Aut}(\mathbb{F}) = \{ \sigma \colon \mathbb{F} \to \mathbb{F} \mid \sigma \text{ is an automorphsm} \}.$
- Let \mathbb{E} be a subfeld of \mathbb{F} . Then define

$$\operatorname{Aut}_{\mathbb{E}}(\mathbb{F}) = \{ \sigma \in \operatorname{Aut}(\mathbb{F}) \mid \text{if } e \in \mathbb{E} \text{ then } \sigma(e) = e \}.$$

• Let H be a subgroup of $Aut(\mathbb{F})$.

$$\mathbb{F}^H = \{ x \in \mathbb{F} \mid \text{if } \sigma \in H \text{ then } \sigma(x) = x \}.$$

Let \mathbb{F} be a field and let $f \in \mathbb{F}[x]$. Let $\overline{\mathbb{F}}$ be the algebraic closure of \mathbb{F} .

- The splitting field of f over \mathbb{F} is the subfield \mathbb{S}_f of $\overline{\mathbb{F}}$ such that
 - (a) $\mathbb{F} \subseteq \mathbb{S}_f$ and there exist $\alpha_1, \ldots, \alpha_r \in \mathbb{S}_f$ such that $f(x) = (x \alpha_1) \cdots (x \alpha_r)$,
 - (b) if \mathbb{K} is a subfield of \mathbb{F} and there exist $\alpha_1, \ldots, \alpha_r \in \mathbb{K}$ such that $f(x) = (x \alpha_1) \cdots (x \alpha_r)$ then $\mathbb{K} \supseteq \mathbb{S}_f$.
- A Galois extension of \mathbb{F} is an extension $\mathbb{K} \supseteq \mathbb{F}$ such that there exists $f \in \mathbb{F}[x]$ such that $K = \mathbb{S}_f$ is the splitting field of \mathbb{F} .

Theorem 6.16. Let \mathbb{K}/\mathbb{F} be a Galois extension. Then the map

$$\begin{cases} field \ inclusions \ \mathbb{F} \subseteq \mathbb{E} \subseteq \mathbb{K} \\ \mathbb{E} & \longmapsto & \operatorname{Aut}_{\mathbb{F}}(\mathbb{K}) \supseteq H \supseteq \{1\} \\ \mathbb{F}^{H} & \longleftarrow & H \end{cases}$$

is an isomorphism of posets.

6.8 Splitting fields and algebraic closure

Let \mathbb{F} be a field and let $S \subseteq \mathbb{F}[x]$. The splitting field of S over \mathbb{F} is the field \mathbb{K} such that

(a) $\mathbb{K} \supseteq \mathbb{F}$ and \mathbb{K} satisfies the condition

If $f \in S$ then there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ such that $f(x) = (x - \alpha_1) \cdots (x - \alpha_n)$,

(b) If \mathbb{E} is a field such that $\mathbb{E} \supseteq \mathbb{F}$ and satisfies the condition

If $f \in S$ then there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ such that $f(x) = (x - \alpha_1) \cdots (x - \alpha_n)$,

then $\mathbb{E} \supseteq \mathbb{K}$.

Theorem 6.17. Let \mathbb{F} be a field and let $S \subseteq \mathbb{F}[x]$. Then the splitting field of S over \mathbb{F} exists. **Corollary 6.18.** Let \mathbb{F} be a field. Then the algebraic closure $\overline{\mathbb{F}}$ of \mathbb{F} exists.