19.6.2 $\mathbb{F}[x]$-Modules

69. Let $A \in M_{7}(\mathbb{C})$ and suppose that the invariant factors of the matrix $x I-A \in M_{7}(\mathbb{C}[x])$ are $1,1,1,1, x, x(x-i), x(x-i)^{3}$.
(a) Give the corresponding decomposition of \mathbb{C}^{7} regarded as a $\mathbb{C}[x]$-module.
(b) Give the Jordan normal form of the matrix A.
(c) Give the minimal and characteristic polynomials of A.
(d) Is A diagonalizable?
70. Let V be the $\mathbb{Q}[x]$-module with presentation matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & -1 \\
0 & x & 0 & 0 \\
1 & 0 & 1-x & 1 \\
0 & 0 & 0 & x^{2}
\end{array}\right)
$$

Show that

$$
V \cong \frac{\mathbb{Q}[x]}{x \mathbb{Q}[x]} \oplus \frac{\mathbb{Q}[x]}{x^{3} \mathbb{Q}[x]}
$$

71. Calculate the invariant factor matrix over $\mathbb{Q}[x]$ for the matrix

$$
\left(\begin{array}{ccc}
1 & x & -2 \\
x+4 & -3 & -6 \\
2 & -2 & x-3
\end{array}\right)
$$

72. Let V be an 8 dimensional complex vector space and $T: V \rightarrow V$ a linear transformation.
(i) Explain how T can be used to define a $\mathbb{C}[x]$-module structure on V.
(ii) Suppose that as a $\mathbb{C}[x]$ module

$$
V \cong \frac{\mathbb{C}[x]}{(x-2)^{2}(x+3)^{2}} \oplus \frac{\mathbb{C}[x]}{(x-2)(x+3)^{3}}
$$

What is the Jordan normal form for the transformation T ? What is the minimal polynomial of T ?
73. Let $A=\left(\begin{array}{ccc}1 & 1 & -3 \\ 0 & -1 & 0 \\ 0 & -1 & 5\end{array}\right)$. Show that the minimal polynomial of A is $f(x)=(x-2)^{2}$ and the characteristic polynomial is $g(x)=(x-2)^{3}$.
74. Let $A=\left(\begin{array}{ccc}1 & 1 & -3 \\ 0 & -1 & 0 \\ 0 & -1 & 5\end{array}\right)$ and let $V=\mathbb{Q}^{3}$ be the corresponding $\mathbb{Q}[x]$-module. Prove that

$$
V \cong \frac{\mathbb{Q}[x]}{(x-2)} \oplus \frac{\mathbb{Q}[x]}{(x-2)^{3}} \oplus \frac{\mathbb{Q}[x]}{(x-2)^{2}}
$$

75. Suppose that the linear transformation T acts on the 8 dimension vector space \mathbb{C} over the complex numbers. Use T to make V into a $\mathbb{C}[t]$-module (where t is an indeterminate) in the usual way. Suppose that as a $\mathbb{C}[t]$-module

$$
V \cong \frac{\mathbb{C}[t]}{(t-5)^{3}(t+2)} \oplus \frac{\mathbb{C}[t]}{(t-5)^{2}(t+2)^{2}} .
$$

(i) What is the Jordan normal form of T.
(ii) What are the eigenvalues of T and how many eigenvectors does T have (up to scalar multiples)?
(iii) What is the minimum polynomial of T ?
76. Let $R=\mathbb{Q}[x]$ and suppose that the torsion R-module M is a direct sum of four cyclic modules whose annihilators (order ideals) are

$$
(x-1)^{3}, \quad\left(x^{2}+1\right)^{2}, \quad(x-1)\left(x^{2}+1\right)^{4} \quad \text { and } \quad(x+2)\left(x^{2}+1\right)^{2} .
$$

Determine the primary components and invariant factors of M.
77. Let $R=\mathbb{Q}[x]$ and suppose that the torsion R-module M is a direct sum of four cyclic modules whose annihilators (order ideals) are

$$
(x-1)^{3}, \quad\left(x^{2}+1\right)^{2}, \quad(x-1)\left(x^{2}+1\right)^{4} \quad \text { and } \quad(x+2)\left(x^{2}+1\right)^{2} .
$$

If M is thought of as a vector space over \mathbb{Q} on which x acts as a linear transformation denoted A, determine the minimum and characteristic polynomials of A and the dimension of M over \mathbb{Q}.
78. Let $R=\mathbb{C}[x]$ and suppose that the torsion R-module M is a direct sum of four cyclic modules whose annihilators (order ideals) are

$$
(x-1)^{3}, \quad\left(x^{2}+1\right)^{2}, \quad(x-1)\left(x^{2}+1\right)^{4} \quad \text { and } \quad(x+2)\left(x^{2}+1\right)^{2} .
$$

If M is thought of as a vector space over \mathbb{C} on which x acts as a linear transformation denoted A then is A diagonalizable?
79. Llet T be a linear operator on the finite dimensional vector space V over \mathbb{C}. Suppose that the characteristic polynomial of T is $(t+2)^{2}(t-5)^{3}$. Determine all possible Jordan forms for a matrix of T. In each case find the minimal polynomial for T and the dimension of the space of eigenvectors.
80. Let V be an eight dimensional complex vector space and let $T: V \rightarrow V$ be a linear transformation. Explain how V can be regarded as a $\mathbb{C}[t]$-module.
81. Let V be an eight dimensional complex vector space and let $T: V \rightarrow V$ be a linear transformation. Suppose that

$$
V \cong \frac{\mathbb{C}[t]}{(t-2)(1-3)^{2}} \oplus \frac{\mathbb{C}[t]}{(t-2)(t-3)^{3}}, \quad \text { as a } \mathbb{C}[t] \text {-module. }
$$

(i) What is the Jordan normal form of T ?
(ii) What is the minimal polynomial of T ?
(iii) What is the dimension of the eigenspace corresponding to the eigenvalue 3 ?
82. Let $A \in M_{8}(\mathbb{C})$ be a matrix and suppose that the matrix $\left.\left.x I-A \in M_{8}(\mathbb{C}] x\right]\right)$ is equivalent to the matrix

$$
\operatorname{diag}\left(1,1,1,1,(x-1),(x-1),(x-1)(x-2),(x-1)(x-2)^{2}(x-3)\right)
$$

(a) Give the corresponding decomposition of \mathbb{C}^{8} regarded as a $\mathbb{C}[x]$-module.
(b) Give the Jordan Normal form of the matrix A.
(c) Give the minimal and characteristic polynomials of A.
83. Let $A \in M_{8}(\mathbb{C})$. Explain how A can be used to define a $\mathbb{C}[X]$-module structure on \mathbb{C}^{8}.
84. Suppose that $X I-A \in M_{8}(\mathbb{C}[X])$ is equivalent to the matrix

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & (X-1) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & (X-1)(X-2)^{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & (X-1)^{2}(X-2)^{2}
\end{array}\right) .
$$

(i) What is the Jordan normal form of A ?
(ii) What are the minimal and characteristic polynomials of the matrix A ?
85. Let V be a complex vector space of dimension 9 and let $T: V \rightarrow V$ be a linear transformation. Explain how T can be used to make V into a $\mathbb{C}[X]$-module.
86. Let V be a complex vector space of dimension 9 and let $T: V \rightarrow V$ be a linear transformation. Suppose that, as a $\mathbb{C}[X]$-module,

$$
V \cong \frac{\mathbb{C}[X]}{(X-5)^{2}(X+2)^{2}} \oplus \frac{\mathbb{C}[X]}{(X+5)^{2}(X+2)^{2}}
$$

(i) What is the Jordan normal form of T ?
(ii) What are the minimal and characteristic polynomials of T ?
87. Let V be the $\mathbb{Q}[X]$-module given by $V=\mathbb{Q}[X]^{4} / N$ where N is the submodule of $\mathbb{Q}[X]^{4}$ generated by

$$
\left\{(1,0,1,0),(1, X, 0,0),(1,0,-X, 0),\left(-1,0,1, x^{2}\right)\right\}
$$

(i) Find the invariant factor decomposition of V.
(ii) Write down the primary decomposition of V.
88. Let V be an 8-dimensional complex vector space and let $T: V \rightarrow V$ be a linear transformation. Explain how V can be regarded as a $\mathbb{C}[X]$-module.
89. Let V be the $\mathbb{C}[X]$-modules given by

$$
V=\frac{\mathbb{C}[X]}{(X-2)(X-3)^{2}} \oplus \frac{\mathbb{C}[X]}{(X-2)(X-3)^{3}}
$$

Let $T: V \rightarrow V$ be the linear transformation determined by the action of T.
(i) What is the Jordan Normal Form of T ?
(ii) What is the minimal polynomial of T ?
(ii) What is the dimension of the eigenspace of T correspondng to the eigenvalue 3 ?
90. Let $A \in M_{6 \times 6}(\mathbb{C})$ such that $x I-A \in M_{6 \times 6}(\mathbb{C}[x]$ is equivalent to the diagonal matrix $\operatorname{diag}(1,1,1,(x-$ $\left.2),(x-2),(x-2)^{2}(x-4)^{2}\right) \in M_{6 \times 6}(\mathbb{C}[x])$.
(i) What is the Jordan normal form of A ?
(ii) What are the characteristic and minimal polynomials of A ?
91. Let V be the $\mathbb{R}[x]$ module given by

$$
V=\frac{\mathbb{R}[x]}{(x-1)} \oplus \frac{\mathbb{R}[x]}{\left(x^{2}-2\right)} \oplus \frac{\mathbb{R}[x]}{\left(x^{2}+2\right)}
$$

(i) Calculate the primary decomposition of V.
(ii) Calculate the invariant factor decompositions of V.
(iii) What is the dimension of V when considered as a vector space over \mathbb{R} ?
92. Let $A=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & -1 & 2\end{array}\right)$.
(a) Use whichever method you prefer to bring A into Jordan normal form. Carefully record your steps.
(b) Recall how to use A to equip \mathbb{C}^{3} with the sturcture of a $\mathbb{C}[x]$-module.
(c) Write down generators and relations for the $\mathbb{C}[x]$ module encoded by A.
(d) The structure theorem for module over a PID gives you a different (potentially smaller) set of generators and relations. What is it in this example?
(e) Find an explicit isomorphism between the representations of parts (c) and (d).
93. Let V be a finite dimensional real vector space and let $T: V \rightarrow V$ be a linear transformation. View V as an $\mathbb{R}[X]$-module. Show that V is finitely generated and is a torsion module.
94. Assume that

$$
M \cong \frac{\mathbb{R}[X]}{\left(X^{2}+1\right)^{2}(X-2)} \oplus \frac{\mathbb{R}[X]}{\left(X^{2}-1\right)^{2}} \oplus \frac{\mathbb{R}[X]}{(X-1)}
$$

(i) What is the primary decomposition of M ?
(ii) What is the dimension of V as a real vector space?
(iii) What is the minimal polynomial of T ?
95. Let V be a \mathbb{C}-vector space with $\operatorname{dim}(V)=8$ and $T: V \rightarrow V$ a linear transformation. Suppose that, as a $\mathbb{C}[t]$-module

$$
V \cong \frac{\mathbb{C}[t]}{(t+5)^{2} \mathbb{C}[t]} \oplus \frac{\mathbb{C}[t]}{(t-3)^{3}(t+5)^{3} \mathbb{C}[t]}
$$

What is the Jordan normal form for the transformation T ? What are the eigenvalues of T and how many eigenvectors does T have? What are the minimal and characteristic polynomials of T ?
96. Let $R=\mathbb{Q}[X]$ and suppose that the rotsion R-module M is a direct sum of four cyclic modules whose annihilators are

$$
(X-1)^{3}, \quad\left(X^{2}+1\right)^{3}, \quad(X-1)\left(X^{2}+1\right)^{4} \quad \text { and } \quad(X+2)\left(X^{2}+1\right)^{2} .
$$

Determine the primary decomposition of M and the invariant factor decomposition of M. If M is thought of as a \mathbb{Q}-vector space on which X acts as a linear transformation denoted A, determine the mninimal and the characteristic polynomials of A and the dimension of M over \mathbb{Q}.
97. Let V be a two dimensional vector space over \mathbb{Q} having basis $\left\{v_{1}, v_{2}\right\}$. Let T be the linear transformation on V defined by $T\left(v_{1}\right)=3 v_{1}-v_{2}$ and $T\left(v_{2}\right)=2 v_{2}$. Make V into a $\mathbb{Q}[X]$-module by defining $X u=T(u)$.
(a) Show that the subspace $U=\left\{a v_{2} \mid a \in \mathbb{Q}\right\}$ is a $\mathbb{Q}[X]$-submodule of V.
(b) Let $f=X^{2}+2 X-3 \in \mathbb{Q}[X]$. Determine the vectors $f v_{1}$ and $f v_{2}$ as linear combinations of v_{1} and v_{2}.
98. Let V be a two dimensional vector space over \mathbb{Q} having basis $\left\{v_{1}, v_{2}\right\}$. Let T be the linear operator on V defined by $T\left(v_{1}\right)=3 v_{1}-v_{2}, T\left(v_{2}\right)=2 v_{2}$. Recall V (together with T) can be identified with a $\mathbb{Q}[t]$-module by defining $t u=T(u)$.
(a) Show that the subspace $U=\left\{a v_{2} \mid a \in \mathbb{Q}\right\}$ of V spanned by v_{2} is actually a $\mathbb{Q}[t]$-submodule of V.
(b) Consider the polynomial $f=t^{2}+2 t-3$. Determine the vectors $f v_{1}$ and $f v_{2}$, that is, express them as linear combinations of v_{1} and v_{2}.
99. Given the matrix $A=\left(\begin{array}{ccc}1-x & 1+x & x \\ x & 1-x & 1 \\ 1+x & 2 x & 1\end{array}\right) \in M_{3 \times 3}(R), R=\mathbb{Q}[x]$, determine the R-module V presented by A. Is V a cyclic R-module? (A module is said to be cyclic if it is generated by a single element).

100 . Let $R=\mathbb{Q}[x]$ and suppose that the R-module M is a direct sum of four cyclic modules

$$
\frac{\mathbb{Q}[x]}{\left((x-1)^{3}\right)} \oplus \frac{\mathbb{Q}[x]}{\left(\left(x^{2}+1\right)^{2}\right)} \oplus \frac{\mathbb{Q}[x]}{\left((x-1)\left(x^{2}+1\right)^{4}\right)} \oplus \frac{\mathbb{Q}[x]}{\left((x+2)\left(x^{2}+1\right)^{2}\right)} .
$$

(a) Decompose M into a direct sum of cyclic modules of the form $\mathbb{Q}[x] /\left(f_{i}^{m_{i}}\right)$, where f_{i} are monic irreducible polynomials in $\mathbb{Q}[x]$ and $m_{i}>0$.
(b) Find $d_{1}, d_{2}, \ldots, d_{k} \in \mathbb{Q}[x]$ monic polynomials with positive degree such that $d_{i} \mid d_{i+1}, i=$ $1, \ldots, k-1$ and $M \cong \mathbb{Q}[x] /\left(d_{1}\right) \oplus \cdots \oplus \mathbb{Q}[x] /\left(d_{k}\right)$.
(c) Identify the $\mathbb{Q}[x]$-module M with the vector space M over \mathbb{Q} together with a linear operator $X: M \rightarrow M, v \mapsto x v$. Suppose the matrix of X is A with respect to a \mathbb{Q}-vector space basis of M. Determine the minimal and characteristic polynomials of A and the dimension of M over \mathbb{Q}. (the minimal polynomial of A is the smallest degree monic polynomial $f(x) \in \mathbb{Q}[x]$ such that $f(A)=0$.)
101. Let $V=\mathbb{C}[t] /\left((t-\lambda)^{m}\right), \lambda \in \mathbb{C}, m>0$, be a cyclic $\mathbb{C}[t]$-module.
(a) Show that

$$
\left(w_{0}=\overline{1}, w_{1}=\overline{t-\lambda}, w_{2}=\overline{(t-\lambda)^{2}}, \ldots, w_{m-1}=\overline{(t-\lambda)^{m-1}}\right)
$$

is a basis of V as \mathbb{C}-vector space.
(b) Show that the matrix of $T: V \rightarrow V, v \mapsto t v$ with respect to the basis in (a) is of the form $A=\left(\begin{array}{ccccc}\lambda & & & & \\ 1 & \lambda & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & 1 & \lambda\end{array}\right) \in M_{m \times m}(\mathbb{C})$.
102. Suppose that V is an 8 dimensional complex vector space and $T: V \rightarrow V$ is a linear operator. Using T we make V into a $\mathbb{C}[t]$-module in the usual way. Suppose that as a $\mathbb{C}[t]$-module

$$
V \cong \frac{\mathbb{C}[t]}{\left((t+5)^{2}\right)} \oplus \frac{\mathbb{C}[t]}{\left((t-3)^{3}(t+5)^{3}\right)}
$$

What is the Jordan (normal) form for the transformation T ? What are the minimal and characteristic polynomials of T ?
103. Let V be an $F[t]$-module and $\left(v_{1}, \ldots, v_{n}\right)$ a basis of V as an F-vector space. Let $T: V \rightarrow V$ be a linear operator and $A \in M_{n \times n}(F)$ the matrix of T with respect to the basis $\left(v_{1}, \ldots, v_{n}\right)$. Prove that the $F[t]$-matrix $t I-A$ is a presentation matrix of (V, T) regarded as a $F[t]$-module.
104. Determine the Jordan normal form of the matrix $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right) \in M_{3 \times 3}(\mathbb{C})$ by decomposing the $\mathbb{C}[t]$-module V presented by the matrix $t I-A \in M_{3 \times 3}(\mathbb{C}[t])$.
105. Find all possible Jordan normal forms for a matrix $A \in M_{5 \times 5}(\mathbb{C})$ whose characteristic polynomial is $(t+2)^{2}(t-5)^{3}$.
106. Let M be the $\mathbb{Q}[x]$-module given by

$$
M=\frac{\mathbb{Q}[x]}{\left(x^{2}+x+1\right) \mathbb{Q}[x]} \oplus \frac{\mathbb{Q}[x]}{\left(x^{3}-1\right) \mathbb{Q}[x]} \oplus \frac{\mathbb{Q}[x]}{(x-3)^{2} \mathbb{Q}[x]}
$$

Let $T: M \rightarrow M$ be the \mathbb{Q}-linear transformation given by $T(u)=X u$.
(a) Give the primary decomposition of M as a $\mathbb{Q}[x]$-module.
(b) What is the dimension of M as a vector space over \mathbb{Q} ?
(c) What is the minimal polynomial of T ?

107 . Let M be the $\mathbb{C}[x]$-module given by

$$
M=\frac{\mathbb{C}[x]}{\left(x^{2}+x+1\right) \mathbb{C}[x]} \oplus \frac{\mathbb{C}[x]}{\left(x^{3}-1\right) \mathbb{C}[x]} \oplus \frac{\mathbb{C}[x]}{(x-3)^{2} \mathbb{C}[x]}
$$

Let $T: M \rightarrow M$ be the \mathbb{C}-linear transformation given by $T(u)=X u$.
(a) Give the primary decomposition of M as a $\mathbb{C}[x]$-module.
(b) What is the Jordan normal form matrix for T ?
108. (a) Compute the characteristic polynomial of the following matrix: [as a reminder, the characteristic polynomial of a matrix A is $\operatorname{det}(\lambda I-A)$, which is a polynomial in the variable $\lambda]$

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & 0 & \cdots & 0 & -a_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right)
$$

(b) What is the characteristic polynomial of any matrix in rational canonical form?
(c) Use this to prove the Cayley-Hamilton Theorem: If A is a square matrix and $p(t)$ is its characteristic polynomial, then $p(A)=0$. [The Cayley-Hamilton theorem holds for matrices with entries in an arbitrary ring, but the intent of this question is to prove it for matrices with entries in a field. However, we can reduce the ring case to the field case (remember how we said to prove $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, we could say WLOG R was a field of characteristic zero)]
109. (a) Let V be a vector space over a field k. Let $T: V \rightarrow V$ be a linear transformation. Show that by defining $\left(\sum_{i} a_{i} x^{i}\right) \cdot v=\sum_{i} a_{i} T^{i}(v)$ defines the structure of a $k[x]$-module on V.
(b) Find an example of a vector space V, together with two linear transformations T and S, such that there does not exist a $k[x, y]$-module structure on V with $x \cdot v=T(v)$ and $y \cdot v=S(v)$ for all $v \in V$.

19.6.3 Smith Normal form

110. Determine the Jordan normal form of the matrix $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$ by calculating the invariant factor matrix of $X-A$.
111. Find all possible Jordan normal forms for a matrices with characteristic polynomial $(t+2)^{2}(t-5)^{3}$.
112. Find the Smith normal form of $A=\left(\begin{array}{ccc}5 & -4 & 1 \\ -1 & -1 & -2 \\ 3 & 0 & 3\end{array}\right)$ over \mathbb{Z}.
113. Find the rational canonical form of $A=\left(\begin{array}{ccc}5 & -4 & 1 \\ -1 & -1 & -2 \\ 3 & 0 & 3\end{array}\right)$ over \mathbb{Q}.
114. Find the Jordan canonical form of $A=\left(\begin{array}{ccc}5 & -4 & 1 \\ -1 & -1 & -2 \\ 3 & 0 & 3\end{array}\right)$ over \mathbb{C}.
115. Find the Smith normal form of $\left(\begin{array}{ccc}11 & -4 & 7 \\ -1 & 2 & 1 \\ 3 & 0 & 3\end{array}\right)$ over \mathbb{Z}.
116. Let $A=\left(\begin{array}{lll}7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3\end{array}\right)$. Find $L, R \in G L_{3}(\mathbb{Z})$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Z}_{\geq 0}$ such that $d_{3} \mathbb{Z} \subseteq d_{2} \mathbb{Z} \subseteq d_{1} \mathbb{Z}$ and $L A R=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
117. Let $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$. Find $L, R \in G L_{2}(\mathbb{Z})$ and $d_{1}, d_{2} \in \mathbb{Z}_{\geq 0}$ such that $d_{2} \mathbb{Z} \subseteq d_{1} \mathbb{Z}$ and $L A R=$ $\operatorname{diag}\left(d_{1}, d_{2}\right)$.
118. Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$. Find $L \in G L_{2}(\mathbb{Z})$ and $R \in G L_{3}(\mathbb{Z})$ and $d_{1}, d_{2} \in \mathbb{Z}_{\geq 0}$ such that $d_{2} \mathbb{Z} \subseteq d_{1} \mathbb{Z}$ and $L A R=\operatorname{diag}\left(d_{1}, d_{2}\right)$.
119. Let $A=\left(\begin{array}{ccc}-4 & -6 & 7 \\ 2 & 2 & 4 \\ 6 & 6 & 15\end{array}\right)$. Find $L, R \in G L_{3}(\mathbb{Z})$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Z}_{\geq 0}$ such that $d_{3} \mathbb{Z} \subseteq d_{2} \mathbb{Z} \subseteq d_{1} \mathbb{Z}$ and $L A R=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
120. Let $R=\mathbb{Q}[X]$. Let $A=\left(\begin{array}{ccc}1-X & 1+X & X \\ X & 1-X & 1 \\ 1+X & 2 X & 1\end{array}\right)$. Find $P, Q \in G L_{3}(R)$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Q}[X]_{\text {monic }}$ such that $d_{3} R \subseteq d_{2} R \subseteq d_{1} R$ and $P A Q=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
121. Let $R=\mathbb{Q}[X]$. Let $A=\left(\begin{array}{ccc}X & 1 & -2 \\ -3 & X+4 & -6 \\ -2 & 2 & X-3\end{array}\right)$. Find $P, Q \in G L_{3}(R)$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Q}[X]_{\text {monic }}$ such that $d_{3} R \subseteq d_{2} R \subseteq d_{1} R$ and $P A Q=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
122. Let $R=\mathbb{Q}[X]$. Let $A=\left(\begin{array}{ccc}X & 0 & 0 \\ 0 & 1-X & 0 \\ 0 & 0 & 1-X^{2}\end{array}\right)$. Find $P, Q \in G L_{3}(R)$ and $d_{1}, d_{2}, d_{3} \in \mathbb{Q}[X]_{\text {monic }}$ such that $d_{3} R \subseteq d_{2} R \subseteq d_{1} R$ and $P A Q=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right)$.
123. Let X be a $n \times m$ matrix with entries in a ring R. Define an ideal $d_{1}(X)$ to be the ideal in R generated by all entries of X. Let A and B be invertible matrices (of the appropriate sizes) with entries in R. Prove that $d_{1}(A X B)=d_{1}(X)$.
124. With notation as in Question 123, let $d_{k}(X)$ be the ideal in R generated by all $k \times k$ minors in X. Prove that $d_{k}(A X B)=d_{k}(X)$.
125. Use the previous result to show that the elements d_{i} in Smith Normal Form are unique up to associates.
