19.6.2 $\mathbb{F}[x]$ -Modules

- 69. Let $A \in M_7(\mathbb{C})$ and suppose that the invariant factors of the matrix $xI A \in M_7(\mathbb{C}[x])$ are $1, 1, 1, 1, x, x(x-i), x(x-i)^3$.
 - (a) Give the corresponding decomposition of \mathbb{C}^7 regarded as a $\mathbb{C}[x]$ -module.
 - (b) Give the Jordan normal form of the matrix A.
 - (c) Give the minimal and characteristic polynomials of A.
 - (d) Is A diagonalizable?
- 70. Let V be the $\mathbb{Q}[x]$ -module with presentation matrix

$$\begin{pmatrix} 1 & 1 & 1 & -1 \\ 0 & x & 0 & 0 \\ 1 & 0 & 1-x & 1 \\ 0 & 0 & 0 & x^2 \end{pmatrix} .$$

Show that

$$V \cong \frac{\mathbb{Q}[x]}{x\mathbb{Q}[x]} \oplus \frac{\mathbb{Q}[x]}{x^3\mathbb{Q}[x]}$$

71. Calculate the invariant factor matrix over $\mathbb{Q}[x]$ for the matrix

$$\begin{pmatrix} 1 & x & -2 \\ x+4 & -3 & -6 \\ 2 & -2 & x-3 \end{pmatrix}$$

- 72. Let V be an 8 dimensional complex vector space and $T: V \to V$ a linear transformation.
 - (i) Explain how T can be used to define a $\mathbb{C}[x]$ -module structure on V.
 - (ii) Suppose that as a $\mathbb{C}[x]$ module

$$V \cong \frac{\mathbb{C}[x]}{(x-2)^2(x+3)^2} \oplus \frac{\mathbb{C}[x]}{(x-2)(x+3)^3}$$

What is the Jordan normal form for the transformation T? What is the minimal polynomial of T?

73. Let $A = \begin{pmatrix} 1 & 1 & -3 \\ 0 & -1 & 0 \\ 0 & -1 & 5 \end{pmatrix}$. Show that the minimal polynomial of A is $f(x) = (x-2)^2$ and the characteristic polynomial is $g(x) = (x-2)^3$.

74. Let $A = \begin{pmatrix} 1 & 1 & -3 \\ 0 & -1 & 0 \end{pmatrix}$ and let $V = \mathbb{Q}^3$ be the corresponding $\mathbb{Q}[x]$ -model.

. Let
$$A = \begin{pmatrix} 0 & -1 & 0 \\ 0 & -1 & 5 \end{pmatrix}$$
 and let $V = \mathbb{Q}^3$ be the corresponding $\mathbb{Q}[x]$ -module. Prove that

$$V \cong \frac{\mathbb{Q}[x]}{(x-2)} \oplus \frac{\mathbb{Q}[x]}{(x-2)^3} \oplus \frac{\mathbb{Q}[x]}{(x-2)^2}$$

75. Suppose that the linear transformation T acts on the 8 dimension vector space \mathbb{C} over the complex numbers. Use T to make V into a $\mathbb{C}[t]$ -module (where t is an indeterminate) in the usual way. Suppose that as a $\mathbb{C}[t]$ -module

$$V \cong \frac{\mathbb{C}[t]}{(t-5)^3(t+2)} \oplus \frac{\mathbb{C}[t]}{(t-5)^2(t+2)^2}$$

- (i) What is the Jordan normal form of T.
- (ii) What are the eigenvalues of T and how many eigenvectors does T have (up to scalar multiples)?
- (iii) What is the minimum polynomial of T?
- 76. Let $R = \mathbb{Q}[x]$ and suppose that the torsion *R*-module *M* is a direct sum of four cyclic modules whose annihilators (order ideals) are

$$(x-1)^3$$
, $(x^2+1)^2$, $(x-1)(x^2+1)^4$ and $(x+2)(x^2+1)^2$.

Determine the primary components and invariant factors of M.

77. Let $R = \mathbb{Q}[x]$ and suppose that the torsion *R*-module *M* is a direct sum of four cyclic modules whose annihilators (order ideals) are

$$(x-1)^3$$
, $(x^2+1)^2$, $(x-1)(x^2+1)^4$ and $(x+2)(x^2+1)^2$.

If M is thought of as a vector space over \mathbb{Q} on which x acts as a linear transformation denoted A, determine the minimum and characteristic polynomials of A and the dimension of M over \mathbb{Q} .

78. Let $R = \mathbb{C}[x]$ and suppose that the torsion *R*-module *M* is a direct sum of four cyclic modules whose annihilators (order ideals) are

 $(x-1)^3$, $(x^2+1)^2$, $(x-1)(x^2+1)^4$ and $(x+2)(x^2+1)^2$.

If M is thought of as a vector space over \mathbb{C} on which x acts as a linear transformation denoted A then is A diagonalizable?

- 79. Llet T be a linear operator on the finite dimensional vector space V over \mathbb{C} . Suppose that the characteristic polynomial of T is $(t+2)^2(t-5)^3$. Determine all possible Jordan forms for a matrix of T. In each case find the minimal polynomial for T and the dimension of the space of eigenvectors.
- 80. Let V be an eight dimensional complex vector space and let $T: V \to V$ be a linear transformation. Explain how V can be regarded as a $\mathbb{C}[t]$ -module.
- 81. Let V be an eight dimensional complex vector space and let $T: V \to V$ be a linear transformation. Suppose that

$$V \cong \frac{\mathbb{C}[t]}{(t-2)(1-3)^2} \oplus \frac{\mathbb{C}[t]}{(t-2)(t-3)^3}, \quad \text{as a } \mathbb{C}[t]\text{-module}.$$

- (i) What is the Jordan normal form of T?
- (ii) What is the minimal polynomial of T?
- (iii) What is the dimension of the eigenspace corresponding to the eigenvalue 3?

82. Let $A \in M_8(\mathbb{C})$ be a matrix and suppose that the matrix $xI - A \in M_8(\mathbb{C}]x]$ is equivalent to the matrix

diag $(1, 1, 1, 1, (x - 1), (x - 1), (x - 1)(x - 2), (x - 1)(x - 2)^{2}(x - 3)).$

- (a) Give the corresponding decomposition of \mathbb{C}^8 regarded as a $\mathbb{C}[x]$ -module.
- (b) Give the Jordan Normal form of the matrix A.
- (c) Give the minimal and characteristic polynomials of A.
- 83. Let $A \in M_8(\mathbb{C})$. Explain how A can be used to define a $\mathbb{C}[X]$ -module structure on \mathbb{C}^8 .

84. Suppose that $XI - A \in M_8(\mathbb{C}[X])$ is equivalent to the matrix

/1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	(X-1)	0	0
0	0	0	0	0	0	$(X-1)(X-2)^2$	0
$\setminus 0$	0	0	0	0	0	0	$(X-1)^2(X-2)^2$

- (i) What is the Jordan normal form of A?
- (ii) What are the minimal and characteristic polynomials of the matrix A?
- 85. Let V be a complex vector space of dimension 9 and let $T: V \to V$ be a linear transformation. Explain how T can be used to make V into a $\mathbb{C}[X]$ -module.
- 86. Let V be a complex vector space of dimension 9 and let $T: V \to V$ be a linear transformation. Suppose that, as a $\mathbb{C}[X]$ -module,

$$V \cong \frac{\mathbb{C}[X]}{(X-5)^2(X+2)^2} \oplus \frac{\mathbb{C}[X]}{(X+5)^2(X+2)^2}.$$

- (i) What is the Jordan normal form of T?
- (ii) What are the minimal and characteristic polynomials of T?
- 87. Let V be the $\mathbb{Q}[X]$ -module given by $V = \mathbb{Q}[X]^4/N$ where N is the submodule of $\mathbb{Q}[X]^4$ generated by

$$\{(1,0,1,0), (1,X,0,0), (1,0,-X,0), (-1,0,1,x^2)\}.$$

- (i) Find the invariant factor decomposition of V.
- (ii) Write down the primary decomposition of V.
- 88. Let V be an 8-dimensional complex vector space and let $T: V \to V$ be a linear transformation. Explain how V can be regarded as a $\mathbb{C}[X]$ -module.
- 89. Let V be the $\mathbb{C}[X]$ -modules given by

$$V = \frac{\mathbb{C}[X]}{(X-2)(X-3)^2} \oplus \frac{\mathbb{C}[X]}{(X-2)(X-3)^3}.$$

Let $T: V \to V$ be the linear transformation determined by the action of T.

- (i) What is the Jordan Normal Form of T?
- (ii) What is the minimal polynomial of T?
- (ii) What is the dimension of the eigenspace of T corresponding to the eigenvalue 3?
- 90. Let $A \in M_{6\times 6}(\mathbb{C})$ such that $xI A \in M_{6\times 6}(\mathbb{C}[x])$ is equivalent to the diagonal matrix diag $(1, 1, 1, (x 2), (x 2), (x 2)^2(x 4)^2) \in M_{6\times 6}(\mathbb{C}[x])$.
 - (i) What is the Jordan normal form of A?
 - (ii) What are the characteristic and minimal polynomials of A?
- 91. Let V be the $\mathbb{R}[x]$ module given by

$$V = \frac{\mathbb{R}[x]}{(x-1)} \oplus \frac{\mathbb{R}[x]}{(x^2-2)} \oplus \frac{\mathbb{R}[x]}{(x^2+2)}$$

- (i) Calculate the primary decomposition of V.
- (ii) Calculate the invariant factor decompositions of V.
- (iii) What is the dimension of V when considered as a vector space over \mathbb{R} ?

92. Let
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & -1 & 2 \end{pmatrix}$$

- (a) Use whichever method you prefer to bring A into Jordan normal form. Carefully record your steps.
- (b) Recall how to use A to equip \mathbb{C}^3 with the sturcture of a $\mathbb{C}[x]$ -module.
- (c) Write down generators and relations for the $\mathbb{C}[x]$ module encoded by A.
- (d) The structure theorem for module over a PID gives you a different (potentially smaller) set of generators and relations. What is it in this example?
- (e) Find an explicit isomorphism between the representations of parts (c) and (d).
- 93. Let V be a finite dimensional real vector space and let $T: V \to V$ be a linear transformation. View V as an $\mathbb{R}[X]$ -module. Show that V is finitely generated and is a torsion module.
- 94. Assume that

$$M \cong \frac{\mathbb{R}[X]}{(X^2+1)^2(X-2)} \oplus \frac{\mathbb{R}[X]}{(X^2-1)^2} \oplus \frac{\mathbb{R}[X]}{(X-1)}.$$

- (i) What is the primary decomposition of M?
- (ii) What is the dimension of V as a real vector space?
- (iii) What is the minimal polynomial of T?
- 95. Let V be a \mathbb{C} -vector space with dim(V) = 8 and $T: V \to V$ a linear transformation. Suppose that, as a $\mathbb{C}[t]$ -module

$$V \cong \frac{\mathbb{C}[t]}{(t+5)^2 \mathbb{C}[t]} \oplus \frac{\mathbb{C}[t]}{(t-3)^3 (t+5)^3 \mathbb{C}[t]}$$

What is the Jordan normal form for the transformation T? What are the eigenvalues of T and how many eigenvectors does T have? What are the minimal and characteristic polynomials of T?

96. Let $R = \mathbb{Q}[X]$ and suppose that the rotsion *R*-module *M* is a direct sum of four cyclic modules whose annihilators are

 $(X-1)^3$, $(X^2+1)^3$, $(X-1)(X^2+1)^4$ and $(X+2)(X^2+1)^2$.

Determine the primary decomposition of M and the invariant factor decomposition of M. If M is thought of as a \mathbb{Q} -vector space on which X acts as a linear transformation denoted A, determine the minimal and the characteristic polynomials of A and the dimension of M over \mathbb{Q} .

- 97. Let V be a two dimensional vector space over \mathbb{Q} having basis $\{v_1, v_2\}$. Let T be the linear transformation on V defined by $T(v_1) = 3v_1 v_2$ and $T(v_2) = 2v_2$. Make V into a $\mathbb{Q}[X]$ -module by defining Xu = T(u).
 - (a) Show that the subspace $U = \{av_2 \mid a \in \mathbb{Q}\}$ is a $\mathbb{Q}[X]$ -submodule of V.
 - (b) Let $f = X^2 + 2X 3 \in \mathbb{Q}[X]$. Determine the vectors fv_1 and fv_2 as linear combinations of v_1 and v_2 .
- 98. Let V be a two dimensional vector space over \mathbb{Q} having basis $\{v_1, v_2\}$. Let T be the linear operator on V defined by $T(v_1) = 3v_1 v_2$, $T(v_2) = 2v_2$. Recall V (together with T) can be identified with a $\mathbb{Q}[t]$ -module by defining tu = T(u).
 - (a) Show that the subspace $U = \{av_2 \mid a \in \mathbb{Q}\}$ of V spanned by v_2 is actually a $\mathbb{Q}[t]$ -submodule of V.
 - (b) Consider the polynomial $f = t^2 + 2t 3$. Determine the vectors fv_1 and fv_2 , that is, express them as linear combinations of v_1 and v_2 .

99. Given the matrix $A = \begin{pmatrix} 1-x & 1+x & x \\ x & 1-x & 1 \\ 1+x & 2x & 1 \end{pmatrix} \in M_{3\times 3}(R), R = \mathbb{Q}[x]$, determine the *R*-module *V*

presented by A. Is V a cyclic R-module? (A module is said to be <u>cyclic</u> if it is generated by a single element).

100. Let $R = \mathbb{Q}[x]$ and suppose that the *R*-module *M* is a direct sum of four cyclic modules

$$\frac{\mathbb{Q}[x]}{((x-1)^3)} \oplus \frac{\mathbb{Q}[x]}{((x^2+1)^2)} \oplus \frac{\mathbb{Q}[x]}{((x-1)(x^2+1)^4)} \oplus \frac{\mathbb{Q}[x]}{((x+2)(x^2+1)^2)}$$

- (a) Decompose M into a direct sum of cyclic modules of the form $\mathbb{Q}[x]/(f_i^{m_i})$, where f_i are monic irreducible polynomials in $\mathbb{Q}[x]$ and $m_i > 0$.
- (b) Find $d_1, d_2, \ldots, d_k \in \mathbb{Q}[x]$ monic polynomials with positive degree such that $d_i|d_{i+1}, i = 1, \ldots, k-1$ and $M \cong \mathbb{Q}[x]/(d_1) \oplus \cdots \oplus \mathbb{Q}[x]/(d_k)$.
- (c) Identify the $\mathbb{Q}[x]$ -module M with the vector space M over \mathbb{Q} together with a linear operator $X: M \to M, v \mapsto xv$. Suppose the matrix of X is A with respect to a \mathbb{Q} -vector space basis of M. Determine the minimal and characteristic polynomials of A and the dimension of M over \mathbb{Q} . (the minimal polynomial of A is the smallest degree monic polynomial $f(x) \in \mathbb{Q}[x]$ such that $f(\overline{A}) = 0$.)
- 101. Let $V = \mathbb{C}[t]/((t-\lambda)^m), \lambda \in \mathbb{C}, m > 0$, be a cyclic $\mathbb{C}[t]$ -module.

(a) Show that

$$(w_0 = \overline{1}, w_1 = \overline{t - \lambda}, w_2 = \overline{(t - \lambda)^2}, \dots, w_{m-1} = \overline{(t - \lambda)^{m-1}})$$

is a basis of V as \mathbb{C} -vector space.

(b) Show that the matrix of $T: V \to V, v \mapsto tv$ with respect to the basis in (a) is of the form $\begin{pmatrix} \lambda \\ \lambda \end{pmatrix}$

$$A = \begin{pmatrix} 1 & \lambda & \\ & \ddots & \ddots & \\ & & \ddots & \ddots & \\ & & & 1 & \lambda \end{pmatrix} \in M_{m \times m}(\mathbb{C}).$$

102. Suppose that V is an 8 dimensional complex vector space and $T: V \to V$ is a linear operator. Using T we make V into a $\mathbb{C}[t]$ -module in the usual way. Suppose that as a $\mathbb{C}[t]$ -module

$$V \cong \frac{\mathbb{C}[t]}{((t+5)^2)} \oplus \frac{\mathbb{C}[t]}{((t-3)^3(t+5)^3)}$$

What is the Jordan (normal) form for the transformation T? What are the minimal and characteristic polynomials of T?

- 103. Let V be an F[t]-module and (v_1, \ldots, v_n) a basis of V as an F-vector space. Let $T: V \to V$ be a linear operator and $A \in M_{n \times n}(F)$ the matrix of T with respect to the basis (v_1, \ldots, v_n) . Prove that the F[t]-matrix tI - A is a presentation matrix of (V, T) regarded as a F[t]-module.
- 104. Determine the Jordan normal form of the matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \in M_{3 \times 3}(\mathbb{C})$ by decomposing the $\mathbb{C}[t]$ -module V presented by the matrix $tI A \in M_{3 \times 3}(\mathbb{C}[t])$.
- 105. Find all possible Jordan normal forms for a matrix $A \in M_{5\times 5}(\mathbb{C})$ whose characteristic polynomial is $(t+2)^2(t-5)^3$.
- 106. Let M be the $\mathbb{Q}[x]$ -module given by

$$M = \frac{\mathbb{Q}[x]}{(x^2 + x + 1)\mathbb{Q}[x]} \oplus \frac{\mathbb{Q}[x]}{(x^3 - 1)\mathbb{Q}[x]} \oplus \frac{\mathbb{Q}[x]}{(x - 3)^2\mathbb{Q}[x]}$$

Let $T: M \to M$ be the Q-linear transformation given by T(u) = Xu.

- (a) Give the primary decomposition of M as a $\mathbb{Q}[x]$ -module.
- (b) What is the dimension of M as a vector space over \mathbb{Q} ?
- (c) What is the minimal polynomial of T?

107. Let M be the $\mathbb{C}[x]$ -module given by

$$M = \frac{\mathbb{C}[x]}{(x^2 + x + 1)\mathbb{C}[x]} \oplus \frac{\mathbb{C}[x]}{(x^3 - 1)\mathbb{C}[x]} \oplus \frac{\mathbb{C}[x]}{(x - 3)^2\mathbb{C}[x]}$$

Let $T: M \to M$ be the \mathbb{C} -linear transformation given by T(u) = Xu.

- (a) Give the primary decomposition of M as a $\mathbb{C}[x]$ -module.
- (b) What is the Jordan normal form matrix for T?

108. (a) Compute the characteristic polynomial of the following matrix: [as a reminder, the characteristic polynomial of a matrix A is $det(\lambda I - A)$, which is a polynomial in the variable λ]

$$\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$$

- (b) What is the characteristic polynomial of any matrix in rational canonical form?
- (c) Use this to prove the Cayley-Hamilton Theorem: If A is a square matrix and p(t) is its characteristic polynomial, then p(A) = 0. [The Cayley-Hamilton theorem holds for matrices with entries in an arbitrary ring, but the intent of this question is to prove it for matrices with entries in a field. However, we can reduce the ring case to the field case (remember how we said to prove det(AB) = det(A) det(B), we could say WLOG R was a field of characteristic zero)]
- 109. (a) Let V be a vector space over a field k. Let $T: V \to V$ be a linear transformation. Show that by defining $(\sum_{i} a_{i}x^{i}) \cdot v = \sum_{i} a_{i}T^{i}(v)$ defines the structure of a k[x]-module on V.
 - (b) Find an example of a vector space V, together with two linear transformations T and S, such that there does not exist a k[x, y]-module structure on V with $x \cdot v = T(v)$ and $y \cdot v = S(v)$ for all $v \in V$.

19.6.3 Smith Normal form

- 110. Determine the Jordan normal form of the matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ by calculating the invariant factor matrix of X A.
- 111. Find all possible Jordan normal forms for a matrices with characteristic polynomial $(t+2)^2(t-5)^3$.
- 112. Find the Smith normal form of $A = \begin{pmatrix} 5 & -4 & 1 \\ -1 & -1 & -2 \\ 3 & 0 & 3 \end{pmatrix}$ over \mathbb{Z} .

113. Find the rational canonical form of $A = \begin{pmatrix} 5 & -4 & 1 \\ -1 & -1 & -2 \\ 3 & 0 & 3 \end{pmatrix}$ over \mathbb{Q} .

114. Find the Jordan canonical form of $A = \begin{pmatrix} 5 & -4 & 1 \\ -1 & -1 & -2 \\ 3 & 0 & 3 \end{pmatrix}$ over \mathbb{C} .

115. Find the Smith normal form of
$$\begin{pmatrix} 11 & -4 & 7\\ -1 & 2 & 1\\ 3 & 0 & 3 \end{pmatrix}$$
 over \mathbb{Z} .

- 116. Let $A = \begin{pmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}$. Find $L, R \in GL_3(\mathbb{Z})$ and $d_1, d_2, d_3 \in \mathbb{Z}_{\geq 0}$ such that $d_3\mathbb{Z} \subseteq d_2\mathbb{Z} \subseteq d_1\mathbb{Z}$ and $LAR = \operatorname{diag}(d_1, d_2, d_3)$
- $LAR = \operatorname{Gla}(a_1, a_2, a_3).$ 117. Let $A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$. Find $L, R \in GL_2(\mathbb{Z})$ and $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ such that $d_2\mathbb{Z} \subseteq d_1\mathbb{Z}$ and $LAR = \operatorname{diag}(d_1, d_2).$ 118. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$. Find $L \in GL_2(\mathbb{Z})$ and $R \in GL_3(\mathbb{Z})$ and $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ such that $d_2\mathbb{Z} \subseteq d_1\mathbb{Z}$ $LAR = \operatorname{diag}(d_1, d_2).$
- 119. Let $A = \begin{pmatrix} -4 & -6 & 7\\ 2 & 2 & 4\\ 6 & 6 & 15 \end{pmatrix}$. Find $L, R \in GL_3(\mathbb{Z})$ and $d_1, d_2, d_3 \in \mathbb{Z}_{\geq 0}$ such that $d_3\mathbb{Z} \subseteq d_2\mathbb{Z} \subseteq d_1\mathbb{Z}$ and $LAR = \text{diag}(d_1)$

120. Let
$$R = \mathbb{Q}[X]$$
. Let $A = \begin{pmatrix} 1 - X & 1 + X & X \\ X & 1 - X & 1 \\ 1 + X & 2X & 1 \end{pmatrix}$. Find $P, Q \in GL_3(R)$ and $d_1, d_2, d_3 \in \mathbb{Q}[X]_{\text{monic}}$ such that $d_3R \subseteq d_2R \subseteq d_1R$ and $PAQ = \text{diag}(d_1, d_2, d_3)$.

121. Let
$$R = \mathbb{Q}[X]$$
. Let $A = \begin{pmatrix} X & 1 & -2 \\ -3 & X+4 & -6 \\ -2 & 2 & X-3 \end{pmatrix}$. Find $P, Q \in GL_3(R)$ and $d_1, d_2, d_3 \in \mathbb{Q}[X]_{\text{monic}}$ such that $d_3R \subseteq d_2R \subseteq d_1R$ and $PAQ = \text{diag}(d_1, d_2, d_3)$.

- 122. Let $R = \mathbb{Q}[X]$. Let $A = \begin{pmatrix} X & 0 & 0 \\ 0 & 1 X & 0 \\ 0 & 0 & 1 X^2 \end{pmatrix}$. Find $P, Q \in GL_3(R)$ and $d_1, d_2, d_3 \in \mathbb{Q}[X]_{\text{monic}}$ such that $d_2R \subseteq d_2R \subseteq d_1R$ and $PAQ = \operatorname{diag}(d_1, d_2, d_3)$. such that $d_3R \subseteq d_2R \subset d_1R$ and PAC
- 123. Let X be a $n \times m$ matrix with entries in a ring R. Define an ideal $d_1(X)$ to be the ideal in R generated by all entries of X. Let A and B be invertible matrices (of the appropriate sizes) with entries in R. Prove that $d_1(AXB) = d_1(X)$.
- 124. With notation as in Question 123, let $d_k(X)$ be the ideal in R generated by all $k \times k$ minors in X. Prove that $d_k(AXB) = d_k(X)$.
- 125. Use the previous result to show that the elements d_i in Smith Normal Form are unique up to associates.