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19.6.2 F[x]-Modules

69. Let A 2 M7(C) and suppose that the invariant factors of the matrix xI � A 2 M7(C[x]) are
1, 1, 1, 1, x, x(x� i), x(x� i)3.

(a) Give the corresponding decomposition of C7 regarded as a C[x]-module.

(b) Give the Jordan normal form of the matrix A.

(c) Give the minimal and characteristic polynomials of A.

(d) Is A diagonalizable?

70. Let V be the Q[x]-module with presentation matrix

0

BB@

1 1 1 �1
0 x 0 0
1 0 1� x 1
0 0 0 x

2

1

CCA .

Show that

V ⇠=
Q[x]

xQ[x]
�

Q[x]

x3Q[x]
.

71. Calculate the invariant factor matrix over Q[x] for the matrix

0

@
1 x �2

x+ 4 �3 �6
2 �2 x� 3

1

A

72. Let V be an 8 dimensional complex vector space and T : V ! V a linear transformation.

(i) Explain how T can be used to define a C[x]-module structure on V .

(ii) Suppose that as a C[x] module

V ⇠=
C[x]

(x� 2)2(x+ 3)2
�

C[x]
(x� 2)(x+ 3)3

.

What is the Jordan normal form for the transformation T? What is the minimal polynomial
of T?

73. Let A =

0

@
1 1 �3
0 �1 0
0 �1 5

1

A. Show that the minimal polynomial of A is f(x) = (x � 2)2 and the

characteristic polynomial is g(x) = (x� 2)3.

74. Let A =

0

@
1 1 �3
0 �1 0
0 �1 5

1

A and let V = Q3 be the corresponding Q[x]-module. Prove that

V ⇠=
Q[x]

(x� 2)
�

Q[x]

(x� 2)3
�

Q[x]

(x� 2)2
.
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75. Suppose that the linear transformation T acts on the 8 dimension vector space C over the
complex numbers. Use T to make V into a C[t]-module (where t is an indeterminate) in the
usual way. Suppose that as a C[t]-module

V ⇠=
C[t]

(t� 5)3(t+ 2)
�

C[t]
(t� 5)2(t+ 2)2

.

(i) What is the Jordan normal form of T .

(ii) What are the eigenvalues of T and how many eigenvectors does T have (up to scalar
multiples)?

(iii) What is the minimum polynomial of T?

76. Let R = Q[x] and suppose that the torsion R-module M is a direct sum of four cyclic modules
whose annihilators (order ideals) are

(x� 1)3, (x2 + 1)2, (x� 1)(x2 + 1)4 and (x+ 2)(x2 + 1)2.

Determine the primary components and invariant factors of M .

77. Let R = Q[x] and suppose that the torsion R-module M is a direct sum of four cyclic modules
whose annihilators (order ideals) are

(x� 1)3, (x2 + 1)2, (x� 1)(x2 + 1)4 and (x+ 2)(x2 + 1)2.

If M is thought of as a vector space over Q on which x acts as a linear transformation denoted
A, determine the minimum and characteristic polynomials of A and the dimension of M over Q.

78. Let R = C[x] and suppose that the torsion R-module M is a direct sum of four cyclic modules
whose annihilators (order ideals) are

(x� 1)3, (x2 + 1)2, (x� 1)(x2 + 1)4 and (x+ 2)(x2 + 1)2.

If M is thought of as a vector space over C on which x acts as a linear transformation denoted
A then is A diagonalizable?

79. Llet T be a linear operator on the finite dimensional vector space V over C. Suppose that the
characteristic polynomial of T is (t + 2)2(t � 5)3. Determine all possible Jordan forms for a
matrix of T . In each case find the minimal polynomial for T and the dimension of the space of
eigenvectors.

80. Let V be an eight dimensional complex vector space and let T : V ! V be a linear transformation.
Explain how V can be regarded as a C[t]-module.

81. Let V be an eight dimensional complex vector space and let T : V ! V be a linear transformation.
Suppose that

V ⇠=
C[t]

(t� 2)(1� 3)2
�

C[t]
(t� 2)(t� 3)3

, as a C[t]-module.

(i) What is the Jordan normal form of T?

(ii) What is the minimal polynomial of T?

(iii) What is the dimension of the eigenspace corresponding to the eigenvalue 3?
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82. Let A 2 M8(C) be a matrix and suppose that the matrix xI�A 2 M8(C]x]) is equivalent to the
matrix

diag(1, 1, 1, 1, (x� 1), (x� 1), (x� 1)(x� 2), (x� 1)(x� 2)2(x� 3)).

(a) Give the corresponding decomposition of C8 regarded as a C[x]-module.

(b) Give the Jordan Normal form of the matrix A.

(c) Give the minimal and characteristic polynomials of A.

83. Let A 2 M8(C). Explain how A can be used to define a C[X]-module structure on C8.

84. Suppose that XI �A 2 M8(C[X]) is equivalent to the matrix

0

BBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 (X � 1) 0 0
0 0 0 0 0 0 (X � 1)(X � 2)2 0
0 0 0 0 0 0 0 (X � 1)2(X � 2)2

1

CCCCCCCCCCA

.

(i) What is the Jordan normal form of A?

(ii) What are the minimal and characteristic polynomials of the matrix A?

85. Let V be a complex vector space of dimension 9 and let T : V ! V be a linear transformation.
Explain how T can be used to make V into a C[X]-module.

86. Let V be a complex vector space of dimension 9 and let T : V ! V be a linear transformation.
Suppose that, as a C[X]-module,

V ⇠=
C[X]

(X � 5)2(X + 2)2
�

C[X]

(X + 5)2(X + 2)2
.

(i) What is the Jordan normal form of T?

(ii) What are the minimal and characteristic polynomials of T?

87. Let V be the Q[X]-module given by V = Q[X]4/N where N is the submodule of Q[X]4 generated
by

{(1, 0, 1, 0), (1, X, 0, 0), (1, 0,�X, 0), (�1, 0, 1, x2)}.

(i) Find the invariant factor decomposition of V .

(ii) Write down the primary decomposition of V .

88. Let V be an 8-dimensional complex vector space and let T : V ! V be a linear transformation.
Explain how V can be regarded as a C[X]-module.

89. Let V be the C[X]-modules given by

V =
C[X]

(X � 2)(X � 3)2
�

C[X]

(X � 2)(X � 3)3
.

Let T : V ! V be the linear transformation determined by the action of T .
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(i) What is the Jordan Normal Form of T?

(ii) What is the minimal polynomial of T?

(ii) What is the dimension of the eigenspace of T correspondng to the eigenvalue 3?

90. LetA 2 M6⇥6(C) such that xI�A 2 M6⇥6(C[x] is equivalent to the diagonal matrix diag(1, 1, 1, (x�
2), (x� 2), (x� 2)2(x� 4)2) 2 M6⇥6(C[x]).

(i) What is the Jordan normal form of A?

(ii) What are the characteristic and minimal polynomials of A?

91. Let V be the R[x] module given by

V =
R[x]

(x� 1)
�

R[x]
(x2 � 2)

�
R[x]

(x2 + 2)
.

(i) Calculate the primary decomposition of V .

(ii) Calculate the invariant factor decompositions of V .

(iii) What is the dimension of V when considered as a vector space over R?

92. Let A =

0

@
3 0 0
0 4 1
0 �1 2

1

A.

(a) Use whichever method you prefer to bring A into Jordan normal form. Carefully record
your steps.

(b) Recall how to use A to equip C3 with the sturcture of a C[x]-module.

(c) Write down generators and relations for the C[x] module encoded by A.

(d) The structure theorem for module over a PID gives you a di↵erent (potentially smaller) set
of generators and relations. What is it in this example?

(e) Find an explicit isomorphism between the representations of parts (c) and (d).

93. Let V be a finite dimensional real vector space and let T : V ! V be a linear transformation.
View V as an R[X]-module. Show that V is finitely generated and is a torsion module.

94. Assume that

M ⇠=
R[X]

(X2 + 1)2(X � 2)
�

R[X]

(X2 � 1)2
�

R[X]

(X � 1)
.

(i) What is the primary decomposition of M?

(ii) What is the dimension of V as a real vector space?

(iii) What is the minimal polynomial of T?

95. Let V be a C-vector space with dim(V ) = 8 and T : V ! V a linear transformation. Suppose
that, as a C[t]-module

V ⇠=
C[t]

(t+ 5)2C[t] �
C[t]

(t� 3)3(t+ 5)3C[t] .

What is the Jordan normal form for the transformation T? What are the eigenvalues of T and
how many eigenvectors does T have? What are the minimal and characteristic polynomials of
T?

449



Algebra notes, Arun Ram April 14, 2024

96. Let R = Q[X] and suppose that the rotsion R-module M is a direct sum of four cyclic modules
whose annihilators are

(X � 1)3, (X2 + 1)3, (X � 1)(X2 + 1)4 and (X + 2)(X2 + 1)2.

Determine the primary decomposition of M and the invariant factor decomposition of M . If
M is thought of as a Q-vector space on which X acts as a linear transformation denoted A,
determine the mninimal and the characteristic polynomials of A and the dimension of M over
Q.

97. Let V be a two dimensional vector space over Q having basis {v1, v2}. Let T be the linear
transformation on V defined by T (v1) = 3v1� v2 and T (v2) = 2v2. Make V into a Q[X]-module
by defining Xu = T (u).

(a) Show that the subspace U = {av2 | a 2 Q} is a Q[X]-submodule of V .

(b) Let f = X
2 + 2X � 3 2 Q[X]. Determine the vectors fv1 and fv2 as linear combinations

of v1 and v2.

98. Let V be a two dimensional vector space over Q having basis {v1, v2}. Let T be the linear
operator on V defined by T (v1) = 3v1 � v2, T (v2) = 2v2. Recall V (together with T ) can be
identified with a Q[t]-module by defining tu = T (u).

(a) Show that the subspace U = {av2 | a 2 Q} of V spanned by v2 is actually a Q[t]-submodule
of V .

(b) Consider the polynomial f = t
2+2t�3. Determine the vectors fv1 and fv2, that is, express

them as linear combinations of v1 and v2.

99. Given the matrix A =

0

@
1� x 1 + x x

x 1� x 1
1 + x 2x 1

1

A 2 M3⇥3(R), R = Q[x], determine the R-module V

presented by A. Is V a cyclic R-module? (A module is said to be cyclic if it is generated by a
single element).

100. Let R = Q[x] and suppose that the R-module M is a direct sum of four cyclic modules

Q[x]

((x� 1)3)
�

Q[x]

((x2 + 1)2)
�

Q[x]

((x� 1)(x2 + 1)4)
�

Q[x]

((x+ 2)(x2 + 1)2)
.

(a) Decompose M into a direct sum of cyclic modules of the form Q[x]/(fmi

i
), where fi are

monic irreducible polynomials in Q[x] and mi > 0.

(b) Find d1, d2, . . . , dk 2 Q[x] monic polynomials with positive degree such that di|di+1, i =
1, . . . , k � 1 and M ⇠= Q[x]/(d1)� · · ·�Q[x]/(dk).

(c) Identify the Q[x]-module M with the vector space M over Q together with a linear operator
X : M ! M, v 7! xv. Suppose the matrix of X is A with respect to a Q-vector space basis
of M . Determine the minimal and characteristic polynomials of A and the dimension of M
over Q. (the minimal polynomial of A is the smallest degree monic polynomial f(x) 2 Q[x]
such that f(A) = 0.)

101. Let V = C[t]/((t� �)m), � 2 C, m > 0, be a cyclic C[t]-module.
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(a) Show that
(w0 = 1̄, w1 = t� �, w2 = (t� �)2, . . . , wm�1 = (t� �)m�1)

is a basis of V as C-vector space.
(b) Show that the matrix of T : V ! V, v 7! tv with respect to the basis in (a) is of the form

A =

0

B@

�
1 �

. . .
. . .
. . .

. . .
1 �

1

CA 2 Mm⇥m(C).

102. Suppose that V is an 8 dimensional complex vector space and T : V ! V is a linear operator.
Using T we make V into a C[t]-module in the usual way. Suppose that as a C[t]-module

V ⇠=
C[t]

((t+ 5)2)
�

C[t]
((t� 3)3(t+ 5)3)

.

What is the Jordan (normal) form for the transformation T? What are the minimal and char-
acteristic polynomials of T?

103. Let V be an F [t]-module and (v1, . . . , vn) a basis of V as an F -vector space. Let T : V ! V

be a linear operator and A 2 Mn⇥n(F ) the matrix of T with respect to the basis (v1, . . . , vn).
Prove that the F [t]-matrix tI �A is a presentation matrix of (V, T ) regarded as a F [t]-module.

104. Determine the Jordan normal form of the matrix A =
⇣

1 1 0
0 1 0
0 1 1

⌘
2 M3⇥3(C) by decomposing the

C[t]-module V presented by the matrix tI �A 2 M3⇥3(C[t]).

105. Find all possible Jordan normal forms for a matrix A 2 M5⇥5(C) whose characteristic polynomial
is (t+ 2)2(t� 5)3.

106. Let M be the Q[x]-module given by

M =
Q[x]

(x2 + x+ 1)Q[x]
�

Q[x]

(x3 � 1)Q[x]
�

Q[x]

(x� 3)2Q[x]
.

Let T : M ! M be the Q-linear transformation given by T (u) = Xu.

(a) Give the primary decomposition of M as a Q[x]-module.

(b) What is the dimension of M as a vector space over Q?

(c) What is the minimal polynomial of T?

107. Let M be the C[x]-module given by

M =
C[x]

(x2 + x+ 1)C[x] �
C[x]

(x3 � 1)C[x] �
C[x]

(x� 3)2C[x] .

Let T : M ! M be the C-linear transformation given by T (u) = Xu.

(a) Give the primary decomposition of M as a C[x]-module.

(b) What is the Jordan normal form matrix for T?
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108. (a) Compute the characteristic polynomial of the following matrix: [as a reminder, the char-
acteristic polynomial of a matrix A is det(�I � A), which is a polynomial in the variable
�] 0

BBBBB@

0 0 0 · · · 0 �a0

1 0 0 · · · 0 �a1

0 1 0 · · · 0 �a2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 · · · 1 �an�1

1

CCCCCA

(b) What is the characteristic polynomial of any matrix in rational canonical form?

(c) Use this to prove the Cayley-Hamilton Theorem: If A is a square matrix and p(t) is its
characteristic polynomial, then p(A) = 0. [The Cayley-Hamilton theorem holds for matrices
with entries in an arbitrary ring, but the intent of this question is to prove it for matrices
with entries in a field. However, we can reduce the ring case to the field case (remember
how we said to prove det(AB) = det(A) det(B), we could say WLOG R was a field of
characteristic zero)]

109. (a) Let V be a vector space over a field k. Let T : V ! V be a linear transformation. Show
that by defining (

P
i
aix

i) · v =
P

i
aiT

i(v) defines the structure of a k[x]-module on V .

(b) Find an example of a vector space V , together with two linear transformations T and
S, such that there does not exist a k[x, y]-module structure on V with x · v = T (v) and
y · v = S(v) for all v 2 V .

19.6.3 Smith Normal form

110. Determine the Jordan normal form of the matrix A =

0

@
1 1 0
0 1 0
0 1 1

1

A by calculating the invariant

factor matrix of X �A.

111. Find all possible Jordan normal forms for a matrices with characteristic polynomial (t+2)2(t�5)3.

112. Find the Smith normal form of A =

0

@
5 �4 1
�1 �1 �2
3 0 3

1

A over Z.

113. Find the rational canonical form of A =

0

@
5 �4 1
�1 �1 �2
3 0 3

1

A over Q.

114. Find the Jordan canonical form of A =

0

@
5 �4 1
�1 �1 �2
3 0 3

1

A over C.

115. Find the Smith normal form of

0

@
11 �4 7
�1 2 1
3 0 3

1

A over Z.
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116. Let A =

0

@
7 8 9
4 5 6
1 2 3

1

A. Find L,R 2 GL3(Z) and d1, d2, d3 2 Z�0 such that d3Z ✓ d2Z ✓ d1Z and

LAR = diag(d1, d2, d3).

117. Let A =

✓
3 1
�1 2

◆
. Find L,R 2 GL2(Z) and d1, d2 2 Z�0 such that d2Z ✓ d1Z and LAR =

diag(d1, d2).

118. Let A =

✓
1 2 3
4 5 6

◆
. Find L 2 GL2(Z) and R 2 GL3(Z) and d1, d2 2 Z�0 such that d2Z ✓ d1Z

and LAR = diag(d1, d2).

119. Let A =

0

@
�4 �6 7
2 2 4
6 6 15

1

A. Find L,R 2 GL3(Z) and d1, d2, d3 2 Z�0 such that d3Z ✓ d2Z ✓ d1Z

and LAR = diag(d1, d2, d3).

120. Let R = Q[X]. Let A =

0

@
1�X 1 +X X

X 1�X 1
1 +X 2X 1

1

A. Find P,Q 2 GL3(R) and d1, d2, d3 2 Q[X]monic

such that d3R ✓ d2R ✓ d1R and PAQ = diag(d1, d2, d3).

121. Let R = Q[X]. Let A =

0

@
X 1 �2
�3 X + 4 �6
�2 2 X � 3

1

A. Find P,Q 2 GL3(R) and d1, d2, d3 2 Q[X]monic

such that d3R ✓ d2R ✓ d1R and PAQ = diag(d1, d2, d3).

122. Let R = Q[X]. Let A =

0

@
X 0 0
0 1�X 0
0 0 1�X

2

1

A. Find P,Q 2 GL3(R) and d1, d2, d3 2 Q[X]monic

such that d3R ✓ d2R ✓ d1R and PAQ = diag(d1, d2, d3).

123. Let X be a n ⇥m matrix with entries in a ring R. Define an ideal d1(X) to be the ideal in R

generated by all entries of X. Let A and B be invertible matrices (of the appropriate sizes) with
entries in R. Prove that d1(AXB) = d1(X).

124. With notation as in Question 123, let dk(X) be the ideal in R generated by all k ⇥ k minors in
X. Prove that dk(AXB) = dk(X).

125. Use the previous result to show that the elements di in Smith Normal Form are unique up to
associates.
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