1.17 Lecture 15: Fields of fractions and polynomial rings

1.17.1 Fields of fractions

Definition. Let R be an integral domain.

- A fraction is an expression $\frac{a}{b}$ with $a \in R, b \in R$ and $b \neq 0$.

Proposition 1.77. Let R be an integral domain. Let $F_{R}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in R, b \neq 0\right\}$ be the set of fractions. Define two fractions $\frac{a}{b}, \frac{c}{d}$ to be equal if $a d=b c$, i.e.

$$
\frac{a}{b}=\frac{c}{d} \quad \text { if } a d=b c .
$$

Then equality of fractions is an equivalence relation on F_{R}.
Proposition 1.78. Let R be an integral domain. Let $F_{R}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in R, b \neq 0\right\}$ be its set of fractions with equality of fractions be as defined in Proposition 2.30. Then the operations $+: F_{R} \times F_{R} \rightarrow F$ and $\times: F_{R} \times F_{R} \rightarrow F_{R}$ given by

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \quad \text { and } \quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \quad \text { are well defined. }
$$

Theorem 1.79. Let R be an integral domain and let $F_{R}=\left\{\left.\frac{a}{h} \right\rvert\, a \in R, b \in R-\{0\}\right\}$ be the set of fractions with equality of fractions be as defined in Proposition 2.30 and let operations $+: F_{R} \times F_{R} \rightarrow$ F_{R} and $\times: F_{R} \times F_{R} \rightarrow F_{R}$ be as given in Proposition 2.31. Then F_{R} is a field.

Definition. Let R be an integral domain.

- The field of fractions of R is the set $F_{R}=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in R, n \neq 0\right\}$ of fractions with equality of fractions defined by

$$
\frac{m}{n}=\frac{p}{q} \quad \text { if } m q=n p
$$

and operations of addition $+: F_{R} \times F_{R} \rightarrow F_{R}$ and multiplication $\times: F_{R} \times F_{R} \rightarrow F_{R}$ defined by

$$
\frac{m}{n}+\frac{p}{q}=\frac{m q+n p}{p q} \quad \text { and } \quad \frac{m}{n} \cdot \frac{p}{q}=\frac{m p}{n q}
$$

HW: Give an example of an integral domain R and its field of fractions.
Proposition 1.80. Let R be an integral domain with identity 1 and let F_{R} be its field of fractions. Then the map $\varphi: R \rightarrow F_{R}$ given by

$$
\begin{array}{rllc}
\varphi: \quad R & \rightarrow & F_{R} \\
r & \mapsto & \frac{r}{1}
\end{array}
$$

is an injective ring homomorphism.

1.17.2 Polynomial Rings

Definition. Let \mathbb{A} be a commutative ring and for $i \in \mathbb{Z}_{>0}$ let x^{i} be a formal symbol.

- A polynomial with coefficients in \mathbb{A} is an expression of the form

$$
a(x)=a_{0}+r_{1} x+a_{2} x^{2}+\cdots
$$

such that
(a) if $i \in \mathbb{Z}_{\geq 0}$ then $a_{i} \in \mathbb{A}$,
(b) There exists $N \in \mathbb{Z}_{>0}$ such that if $i \in \mathbb{Z}_{>N}$ then $a_{i}=0$.

- Polynomials $f(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots$ and $g(x)=s_{0}+s_{1} x+s_{2} x^{2}+\cdots$ with coefficients in R are

$$
\text { equal if } \quad r_{i}=s_{i} \text { for } i \in \mathbb{Z}_{\geq 0} .
$$

- The zero polynomial is the polynomial $0=0+0 x+0 x^{2}+\cdots$.
- The degree $\operatorname{deg}(f(x))$ of a polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ with coefficients in \mathbb{A} is

$$
\text { the smallest } N \in \mathbb{Z}_{\geq 0} \text { such that } a_{N} \neq 0 \text { and } a_{k}=0 \text { for } k \in \mathbb{Z}_{>N} \text {. }
$$

If $f(x)=0+0 x+0 x^{2}+\cdots$ then define $\operatorname{deg}(f(x))=0$.

- Let \mathbb{A} be a commutative ring. The ring of polynomials with coefficients in \mathbb{A} is the set $\mathbb{A}[x]$ of polynomials with coefficients in \mathbb{A} with the operations of addition and multiplication defined as follows:
If $f(x), g(x) \in \mathbb{A}[x]$ with

$$
f(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots \quad \text { and } \quad g(x)=s_{0}+s_{1} x+s_{2} x^{2}+\cdots,
$$

then

$$
\begin{aligned}
f(x)+g(x) & =\left(r_{0}+s_{0}\right)+\left(r_{1}+s_{1}\right) x+\left(r_{2}+s_{2}\right) x^{2}+\cdots, \quad \text { and } \\
f(x) g(x) & =c_{0}+c_{1} x+c_{2} x^{2}+\cdots, \quad \text { where } \quad c_{k}=\sum_{i+j=k} r_{i} s_{j} .
\end{aligned}
$$

Proposition 1.81.

(a) Let R, S be commutative rings and let $\varphi: R \rightarrow S$ be a ring homomorphism. Then the function

$$
\begin{array}{ccc}
\psi: R[x] & \longrightarrow & S[x] \\
r_{0}+r_{1} x+r_{2} x^{2}+\cdots & \longmapsto & \longmapsto\left(r_{0}\right)+\varphi\left(r_{1}\right) x+\varphi\left(r_{2}\right) x^{2}+\cdots
\end{array}
$$

is a ring homomorphism.
(b) Let $R \subseteq S$ be an inclusion of commutative rings and let $\alpha \in R$. Then the evaluation homomorphism

$$
\begin{array}{cccc}
\mathrm{ev}_{\alpha, S}: & R[x] \\
r_{0}+r_{1} x+\cdots r_{d} x^{d} & \rightarrow & S \\
\mapsto
\end{array} r_{0}+r_{1} \alpha+\cdots+r_{d} \alpha^{d} . \quad \text { is a ring homomorphism. }
$$

1.17.3 Transport of ring properties to the polynomial ring

Theorem 1.82.
(a) If \mathbb{A} is a commutativering then $\mathbb{A}[x]$ is a commutativering.
(b) If \mathbb{A} is an integral domain then $\mathbb{A}[x]$ is an integral domain.
(c) If \mathbb{F} is a field then $\mathbb{F}[x]$ is a Euclidean domain with size function

$$
\begin{array}{cccc}
\operatorname{deg}: \mathbb{F}[x]-\{0\} & \rightarrow & \mathbb{Z}_{\geq 0} \\
f(x) & \mapsto & \operatorname{deg}(f(x)) .
\end{array}
$$

(d) If \mathbb{A} satisfies $A C C$ then $\mathbb{A}[x]$ satisfies $A C C$.
(e) If \mathbb{A} is a UFD then $\mathbb{A}[x]$ is a UFD.

HW: Show that \mathbb{Z} is a PID and $\mathbb{Z}[x]$ is not a PID.

