1.17 Lecture 15: Fields of fractions and polynomial rings

1.17.1 Fields of fractions

Definition. Let R be an integral domain.

• A fraction is an expression $\frac{a}{b}$ with $a \in R$, $b \in R$ and $b \neq 0$.

Proposition 1.77. Let R be an integral domain. Let $F_R = \left\{\frac{a}{b} \mid a, b \in R, b \neq 0\right\}$ be the set of fractions. Define two fractions $\frac{a}{b}$, $\frac{c}{d}$ to be equal if ad = bc, i.e.

$$\frac{a}{b} = \frac{c}{d}$$
 if $ad = bc$.

Then equality of fractions is an equivalence relation on F_R .

Proposition 1.78. Let R be an integral domain. Let $F_R = \left\{ \frac{a}{b} \mid a, b \in R, b \neq 0 \right\}$ be its set of fractions with equality of fractions be as defined in Proposition 2.30. Then the operations $+: F_R \times F_R \to F$ and $\times: F_R \times F_R \to F_R$ given by

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ are well defined.

Theorem 1.79. Let R be an integral domain and let $F_R = \left\{ \frac{a}{b} \mid a \in R, b \in R - \{0\} \right\}$ be the set of fractions with equality of fractions be as defined in Proposition 2.30 and let operations $+: F_R \times F_R \to F_R$ and $\times: F_R \times F_R \to F_R$ be as given in Proposition 2.31 Then F_R is a field.

Definition. Let R be an integral domain.

• The field of fractions of R is the set $F_R = \left\{\frac{m}{n} \mid m, n \in R, n \neq 0\right\}$ of fractions with equality of fractions defined by

$$\frac{m}{n} = \frac{p}{q} \quad \text{if } mq = np$$

and operations of addition $+: F_R \times F_R \to F_R$ and multiplication $\times: F_R \times F_R \to F_R$ defined by

$$\frac{m}{n} + \frac{p}{q} = \frac{mq + np}{pq}$$
 and $\frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$.

HW: Give an example of an integral domain R and its field of fractions.

Proposition 1.80. Let R be an integral domain with identity 1 and let F_R be its field of fractions. Then the map $\varphi \colon R \to F_R$ given by

$$\begin{array}{rcccc} \varphi \colon & R & \to & F_R \\ & r & \mapsto & \frac{r}{1} \end{array}$$

is an injective ring homomorphism.

1.17.2 Polynomial Rings

Definition. Let A be a commutative ring and for $i \in \mathbb{Z}_{>0}$ let x^i be a formal symbol.

• A polynomial with coefficients in A is an expression of the form

$$a(x) = a_0 + r_1 x + a_2 x^2 + \cdots$$

such that

- (a) if $i \in \mathbb{Z}_{>0}$ then $a_i \in \mathbb{A}$,
- (b) There exists $N \in \mathbb{Z}_{>0}$ such that if $i \in \mathbb{Z}_{>N}$ then $a_i = 0$.
- Polynomials $f(x) = r_0 + r_1 x + r_2 x^2 + \cdots$ and $g(x) = s_0 + s_1 x + s_2 x^2 + \cdots$ with coefficients in R are

equal if
$$r_i = s_i$$
 for $i \in \mathbb{Z}_{\geq 0}$.

- The zero polynomial is the polynomial $0 = 0 + 0x + 0x^2 + \cdots$.
- The degree deg (f(x)) of a polynomial $f(x) = a_0 + a_1x + a_2x^2 + \cdots$ with coefficients in A is

the smallest $N \in \mathbb{Z}_{\geq 0}$ such that $a_N \neq 0$ and $a_k = 0$ for $k \in \mathbb{Z}_{>N}$.

If $f(x) = 0 + 0x + 0x^2 + \cdots$ then define deg (f(x)) = 0.

• Let A be a commutative ring. The **ring of polynomials with coefficients in** A is the set A[x] of polynomials with coefficients in A with the operations of addition and multiplication defined as follows:

If $f(x), g(x) \in \mathbb{A}[x]$ with

$$f(x) = r_0 + r_1 x + r_2 x^2 + \cdots$$
 and $g(x) = s_0 + s_1 x + s_2 x^2 + \cdots$,

then

$$f(x) + g(x) = (r_0 + s_0) + (r_1 + s_1)x + (r_2 + s_2)x^2 + \cdots, \text{ and}$$

$$f(x)g(x) = c_0 + c_1x + c_2x^2 + \cdots, \text{ where } c_k = \sum_{i+j=k} r_i s_j.$$

Proposition 1.81.

(a) Let R, S be commutative rings and let $\varphi \colon R \to S$ be a ring homomorphism. Then the function

$$\psi \colon R[x] \longrightarrow S[x]$$

$$r_0 + r_1 x + r_2 x^2 + \cdots \longmapsto \varphi(r_0) + \varphi(r_1) x + \varphi(r_2) x^2 + \cdots$$

is a ring homomorphism.

(b) Let $R \subseteq S$ be an inclusion of commutative rings and let $\alpha \in R$. Then the evaluation homomorphism

$$ev_{\alpha,S} \colon \begin{array}{cc} R[x] & \to & S \\ r_0 + r_1 x + \cdots + r_d x^d & \mapsto & r_0 + r_1 \alpha + \cdots + r_d \alpha^d \end{array}$$
 is a ring homomorphism

1.17.3 Transport of ring properties to the polynomial ring Theorem 1.82.

- (a) If \mathbb{A} is a commutativering then $\mathbb{A}[x]$ is a commutativering.
- (b) If \mathbb{A} is an integral domain then $\mathbb{A}[x]$ is an integral domain.
- (c) If \mathbb{F} is a field then $\mathbb{F}[x]$ is a Euclidean domain with size function

$$\begin{array}{rcl} \deg\colon & \mathbb{F}[x] - \{0\} & \to & \mathbb{Z}_{\geq 0} \\ & f(x) & \mapsto & \deg(f(x)). \end{array}$$

(d) If \mathbb{A} satisfies ACC then $\mathbb{A}[x]$ satisfies ACC.

(e) If \mathbb{A} is a UFD then $\mathbb{A}[x]$ is a UFD.

HW: Show that \mathbb{Z} is a PID and $\mathbb{Z}[x]$ is not a PID.