3.14 Lecture 17: Finiteness conditions and the Jordan-Hölder theorem

Let R be a ring and let M be an R-module.

- The lattice of submodules of M is

$$
\mathcal{S}_{0}^{M}=\{\text { submodules of } M\} \quad \text { partially ordered by inclusion. }
$$

- The R-module M satisfies ACC if increasing sequences in \mathcal{S}_{0}^{M} are finite.
- The R-module M satisfies DCC if decreasing sequences in \mathcal{S}_{0}^{M} are finite.
- The R-module is simple if the only submodules of M are 0 and M.
- A finite composition series of M is a chain of submodules

$$
0=M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{n}=M \quad \text { such that } M_{i} / M_{i+1} \text { is simple and } n \in \mathbb{Z}_{>0} .
$$

- The R-module M is finitely generated if there exists $k \in \mathbb{Z}_{>0}$ and $m_{1}, \ldots, m_{k} \in M$ such that

$$
M=R m_{1}+\cdots+R m_{k} .
$$

Proposition 3.65. Let N be a submodule of M.
(a) M satisfies $A C C$ if and only if N and M / N satisfy $A C C$.
(b) M satisfies $D C C$ if and only if N and M / N satisfy $D C C$.
(c) M satsfies both $A C C$ and DCC if and only if N and M / N satisfy both $A C C$ and DCC.

Proposition 3.66. Let R be a ring and let M be an R-module.
(a) If M is finitely generated and N is an R-submodule of M then M / N is finitely generated.
(b) M satisfies $A C C$ if and only if every submodule of M is finitely generated.
(c) If R satisfies $A C C$ and M is finitely generated then M satisfies $A C C$.
(e) If R satisifes $D C C$ and M is finitely generated then M satisfies both $A C C$ and DCC.

Theorem 3.67. (Jordan-Hölder theorem) Let A be a ring and let M be an A-module.
(a) M has a finite composition series if and only if M satisfies $A C C$ and DCC.
(b) Any two series

$$
0 \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{r}=M \quad \text { and } \quad 0 \subseteq M_{1}^{\prime} \subseteq M_{2}^{\prime} \subseteq \cdots \subseteq M_{s}^{\prime}=M
$$

can be refined to have the same length and the same composition factors.

Greedy refinement:. Assume that

$$
0 \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{r-1} \stackrel{p}{\subseteq} M_{r}=M \quad \text { and } \quad 0 \subseteq N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{s-1} \stackrel{q}{\subseteq} N_{s}=M
$$

are composition series of M. Then build the series

$$
0 \subseteq M_{1} \cap N_{s-1} \subseteq M_{2} \cap N_{s-1} \subseteq \cdots \subseteq M_{r-1} \cap N_{s-1} \stackrel{p}{\subseteq} N_{s-1} \stackrel{q}{\subseteq} M_{r}=M .
$$

This takes the q factor out of the series of $\left(M_{i}\right)$ and moves it to the end.
Symmetric refinement: Let

$$
0 \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{r}=M \quad \text { and } \quad 0 \subseteq N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{s}=M
$$

be finite ascending chains in $\mathcal{S}_{[0, M]}$. For $I \in\{1, \ldots, r\}$ and $j \in\{1, \ldots, s\}$ define

$$
\left.M_{i j}=\left(M_{i}+N_{j}\right) \cap M_{i+1} \quad \text { and } \quad N_{j i}=N_{j}+M_{i}\right) \cap N_{j+1} .
$$

This expands $M_{i} \subseteq M_{i+1}$ to

$$
M_{i}=\left(N_{0}^{\prime}+M_{i}\right) \cap M_{i+1} \subseteq\left(N_{1}^{\prime}+M_{i}\right) \cap M_{i+1} \subseteq \cdots \subseteq\left(N_{s}^{\prime}+M_{i}\right) \cap M_{i+1}=M_{i+1},
$$

and $N_{j} \subseteq N_{j+1}$ to

$$
N_{j}=\left(M_{0}+N_{j}\right) \cap N_{j+1} \subseteq\left(M_{1}+N_{j}\right) \cap N_{j+1} \subseteq \cdots \subseteq\left(M_{r}+N_{j}\right) \cap N_{j+1}=N_{j+1}
$$

Let

$$
Q_{i j}=\frac{M_{i j}}{M_{i, j-1}} \quad \text { and } \quad Q_{j i}^{\prime}=\frac{N_{j i}}{N_{j, i-1}} .
$$

Then

$$
Q_{i j} \cong Q_{j i}^{\prime}
$$

and so the two new chains $\left(M_{i j}\right)$ and $\left(N_{j i}\right)$ have the same length and the same multiset of factors.
Example:. Two factorizations of $d=2^{2} 3^{3}$ in \mathbb{Z} are

$$
\left(2^{2} 3^{3} \mathbb{Z} \subseteq 2^{2} 3^{2} \mathbb{Z} \subseteq 2^{2} \mathbb{Z} \subseteq \mathbb{Z}\right)=\left(M_{0} \subseteq M_{1} \subseteq M_{2} \subseteq M_{3}\right)
$$

and

$$
\left(2^{2} 3^{3} \mathbb{Z} \subseteq 3^{3} \mathbb{Z} \subseteq \mathbb{Z}\right)=\left(N_{0} \subseteq N_{1} \subseteq N_{2}\right)
$$

Then

$$
\left(\begin{array}{ccccc}
2^{2} 3^{3} \mathbb{Z} & \stackrel{1}{\subseteq} & 2^{2} 3^{3} \mathbb{Z} & \stackrel{3}{\subseteq} & 2^{2} 3^{2} \mathbb{Z} \\
2^{2} 3^{2} \mathbb{Z} & 1 & 2^{2} 3^{2} \mathbb{Z} & \subseteq & 2^{2} \mathbb{Z} \\
2^{2} \mathbb{Z} & \subseteq & \mathbb{Z} & \subseteq & \mathbb{Z}
\end{array}\right)=\left(\begin{array}{ccccc}
2_{00} & \subseteq & M_{01} & \subseteq & M_{02} \\
M_{10} & \subseteq & M_{11} & \subseteq & M_{12} \\
M_{20} & \subseteq & M_{21} & \subseteq & M_{22}
\end{array}\right)
$$

and

$$
\left(\begin{array}{ccccccc}
2^{2} 3^{3} \mathbb{Z} & \subseteq & 2^{2} 3^{3} \mathbb{Z} & \stackrel{1}{\subseteq} & 2^{2} 3^{3} \mathbb{Z} & 2^{2} & 3^{3} \mathbb{Z} \\
3^{3} \mathbb{Z} & \subseteq & 3^{2} \mathbb{Z} & \stackrel{3^{2}}{\subseteq} & \mathbb{Z} & \subseteq & \mathbb{Z}
\end{array}\right)=\left(\begin{array}{ccccccc}
N_{00} & \subseteq & N_{01} & \subseteq & N_{02} & \subseteq & N_{03} \\
N_{10} & \subseteq & N_{11} & \subseteq & N_{12} & \subseteq & N_{13}
\end{array}\right)
$$

and the succesive quotients of these two series are related by

$$
\left(\begin{array}{cc}
1 & 3 \\
1 & 3^{2} \\
2^{2} & 1
\end{array}\right)^{t}=\left(\begin{array}{ccc}
1 & 1 & 2^{2} \\
3 & 3^{2} & 1
\end{array}\right)
$$

3.14.1 Some proofs

Proposition 3.68. Let N be a submodule of M.
(a) M satisfies $A C C$ if and only if N and M / N satisfy $A C C$.
(b) M satisfies DCC if and only if N and M / N satisfy DCC.
(c) M satsfies both $A C C$ and $D C C$ if and only if N and M / N satisfy both $A C C$ and DCC.

Proof. (a) \Rightarrow : Assume that M satisfies ACC.
To show: (aa) N satisfies ACC.
To show: (ab) M / N satsfies ACC.
(aa) Let $0=N_{0} \subseteq N_{1} \subseteq \cdots$ be a chain in \mathcal{S}_{N}.
Since $N \subseteq M$ then $0=N_{0} \subseteq N_{1} \subseteq \cdots \subseteq M$ is a chain in \mathcal{S}_{M}.
Since M satisfies ACC then $0=N_{0} \subseteq N_{1} \subseteq \cdots$ is finite.
So N satisfies ACC.
(ab) Let $0=M_{0} / N \subseteq M_{1} / N \subseteq \cdots \subseteq M / N$ be a chain in $\mathcal{S}_{M / N}$.
By the correspondence theorem the chain in $\mathcal{S}_{M / N}$ corresponds to a chain $0 \subseteq N=M_{0} \subseteq M_{1} \subseteq$ $\cdots \subseteq M$ in \mathcal{S}_{M}.
Since M satsifes ACC then $0 \subseteq N=M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M$ is finite.
So $0=M_{0} / N \subseteq M_{1} / N \subseteq \cdots \subseteq M / N$ is finite.
So M / N satsfies ACC.
(a) \Leftarrow : Assume that N and M / N satisfy ACC.

To show: M satsifies ACC. Let $0=M_{0} \subseteq M_{1} \subseteq \cdots$ be an ascending chain in \mathcal{S}_{0}^{M}.
Then

$$
0=\frac{M_{0}+N}{N} \subseteq \frac{M_{1}+N}{N} \subseteq \cdots \subseteq \frac{M}{N} \quad \text { and } \quad 0=\left(M_{0} \cap N\right) \subseteq\left(M_{1} \cap N\right) \subseteq \cdots \subseteq N
$$

are ascending chains in $\mathcal{S}_{0}^{M / N}$ and \mathcal{S}_{0}^{N}.
Let $k \in \mathbb{Z}_{>0}$ such that if $\ell \in \mathbb{Z}_{\geq k}$ then

$$
\frac{M_{\ell}+N}{N}=\frac{M_{k}+N}{N} \quad \text { and } \quad M_{\ell} \cap N=M_{k} \cap N .
$$

By the correspondence theorem, if $\ell \in \mathbb{Z}_{\geq k}$ then

$$
M_{\ell}+N=M_{k}+N \quad \text { and } \quad M_{\ell} \cap N=M_{k} \cap N .
$$

Thus

$$
M_{\ell} \cap\left(M_{k}+N\right)=M_{\ell} \cap\left(M_{\ell}+N\right)=M_{\ell} \quad \text { and } \quad M_{k}+\left(m_{\ell} \cap N\right)=M_{k}+\left(M_{k} \cap N\right)=M_{k} .
$$

Since $M_{k} \subseteq M_{\ell}$ then the modular law says that

$$
M_{\ell} \cap\left(M_{k}+N\right)=M_{k}+\left(M_{\ell} \cap N\right) .
$$

So $M_{k}=M_{\ell}$.
(b) The proof of (b) is similar to the proof of (a), except with ACC replaced by DCC and \subseteq replaced by \supseteq.
(c) is the combination of (a) and (b).

Proposition 3.69. Let R be a ring and let M be an R-module.
(a) If M is finitely generated and N is an R-submodule of M then M / N is finitely generated.
(b) M satisfies $A C C$ if and only if every submodule of M is finitely generated.
(c) If R satisfies $A C C$ and M is finitely generated then M satisfies $A C C$.
(e) If R satisifes $D C C$ and M is finitely generated then M satisfies both $A C C$ and $D C C$.

Proof. (a) If m_{1}, \ldots, m_{k} are generators of M then $m_{1}+N, \ldots, m_{k}+N$ are generators of M / N.
$(\mathrm{b}) \Leftarrow$: Assume that every submodule of M is finitely generated.
Let $N_{1} \subseteq N_{2} \subseteq \cdots$ be an ascending chain of submodules of M.
To show: There exists $r \in \mathbb{Z}_{>0}$ such that if $\ell \in \mathbb{Z}_{\geq r}$ then $N_{\ell}=N_{r}$.
Then $N_{\mathrm{un}}=\bigcup_{i \in \mathbb{Z}_{>0}} N_{i}$ is a finitely generated submodule of M
Let x_{1}, \ldots, x_{k} be generators of $N_{\text {un }}$ and let $\ell_{1}, \ldots, \ell_{k}$ be such that $x_{i} \in N_{\ell_{i}}$.
Then $x_{1}, \ldots, x_{k} \in N_{r}$ where $r=\max \left\{\ell_{1}, \ldots, \ell_{k}\right\}$.
So $N_{\text {un }}=\bigcup_{i \in \mathbb{Z}_{>0}} N_{i}=N_{r}$ and if $\ell \in \mathbb{Z}_{>r}$ then $N_{r}=N_{\ell}$.
So M satisfies ACC.
(b) \Rightarrow : Assume that M satisfies ACC and let N be a submodule of M. Then one of the equivalent characterizations of ACC gives that the set of finitely generated submodule of N,

$$
\{P \subseteq N \mid P \text { is finitely generated }\}, \quad \text { has a maximal element } P_{\max }
$$

To show: $N=P_{\text {max }}$.
By definition, $P_{\max } \subseteq N$.
To show: $N \subseteq P_{\max }$.
Let $x \in N$.
Then $P_{\max }+\mathbb{A} x \subseteq N$ and $P_{\max }+\mathbb{A} x$ is finitely generated.
So $P_{\text {max }}+\mathbb{A} x \subseteq P_{\max }$.
So $x \in P_{\text {max }}$.
So $N \subseteq P_{\max }$.
So $N=P_{\max }$.
So N is finitely generated.
(c) Assume R satisfies ACC and M is finitely generated.

To show: M satsfies ACC.
Since M is finitely generated there exists $n \in \mathbb{Z}_{>0}$ and a surjective homomorphism $\mathbb{A}^{\oplus v} \rightarrow M$.
Since \mathbb{A} satisfies ACC then $\mathbb{A}^{\oplus n}$ satisifes ACC.
So there is an exact sequence $0 \rightarrow K \rightarrow \mathbb{A}^{\oplus n} \rightarrow M \rightarrow 0$ with $\mathbb{A}^{\oplus n}$ satisfiying ACC.
By Proposition 4.4 (a), K and M satisfy ACC.
So M satisfies ACC.
(da) To show: If R satisfies DCC and M is finitely generated then M satisfies DCC. The proof of (da) is the same as the proof of (c) except with ACC replaced by DCC and the inclreasing chains replaced by decreasing chains.
(db) Assume R satisfies DCC and M is finitely generated. To show: M satisfies ACC.
Let $M_{i}=\operatorname{Rad}(R)^{i} M$.
By (da), M satisfies DCC, and so M_{i} and M / M_{i} satisfy DCC.
So M_{i} / M_{i+1} satisfies DCC and $\operatorname{Rad}(R)$ acts on M_{i} / M_{i+1} by 0 .
So M_{i} / M_{i+1} is a $R / \operatorname{Rad}(R)$-module and thus M_{i} / M_{i+1} is a finite direct sum of simple submodules.
So, by (a), M has a composition series and satisfies both ACC and DCC.

