3.14 Lecture 17: Finiteness conditions and the Jordan-Hölder theorem

Let R be a ring and let M be an R-module.

• The lattice of submodules of M is

 $\mathcal{S}_0^M = \{ \text{submodules of } M \}$ partially ordered by inclusion.

- The *R*-module *M* satisfies ACC if increasing sequences in \mathcal{S}_0^M are finite.
- The *R*-module *M* satisfies **DCC** if decreasing sequences in \mathcal{S}_0^M are finite.
- The *R*-module is **simple** if the only submodules of *M* are 0 and *M*.
- A finite composition series of M is a chain of submodules

 $0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_n = M$ such that M_i/M_{i+1} is simple and $n \in \mathbb{Z}_{>0}$.

• The *R*-module *M* is **finitely generated** if there exists $k \in \mathbb{Z}_{>0}$ and $m_1, \ldots, m_k \in M$ such that

$$M = Rm_1 + \dots + Rm_k.$$

Proposition 3.65. Let N be a submodule of M.

- (a) M satisfies ACC if and only if N and M/N satisfy ACC.
- (b) M satisfies DCC if and only if N and M/N satisfy DCC.
- (c) M satisfies both ACC and DCC if and only if N and M/N satisfy both ACC and DCC.

Proposition 3.66. Let R be a ring and let M be an R-module.

- (a) If M is finitely generated and N is an R-submodule of M then M/N is finitely generated.
- (b) M satisfies ACC if and only if every submodule of M is finitely generated.
- (c) If R satisfies ACC and M is finitely generated then M satisfies ACC.
- (e) If R satisfies DCC and M is finitely generated then M satisfies both ACC and DCC.

Theorem 3.67. (Jordan-Hölder theorem) Let A be a ring and let M be an A-module.

(a) M has a finite composition series if and only if M satisfies ACC and DCC.

(b) Any two series

 $0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_r = M$ and $0 \subseteq M'_1 \subseteq M'_2 \subseteq \cdots \subseteq M'_s = M$

can be refined to have the same length and the same composition factors.

Greedy refinement: Assume that

 $0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_{r-1} \stackrel{p}{\subseteq} M_r = M$ and $0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq N_{s-1} \stackrel{q}{\subseteq} N_s = M$ are composition series of M. Then build the series

$$0 \subseteq M_1 \cap N_{s-1} \subseteq M_2 \cap N_{s-1} \subseteq \dots \subseteq M_{r-1} \cap N_{s-1} \stackrel{p}{\subseteq} N_{s-1} \stackrel{q}{\subseteq} M_r = M_r$$

This takes the q factor out of the series of (M_i) and moves it to the end.

Symmetric refinement: Let

$$0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_r = M$$
 and $0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq N_s = M$

be finite ascending chains in $S_{[0,M]}$. For $I \in \{1, \ldots, r\}$ and $j \in \{1, \ldots, s\}$ define

$$M_{ij} = (M_i + N_j) \cap M_{i+1} \quad \text{and} \quad N_{ji} = N_j + M_i) \cap N_{j+1}$$

This expands $M_i \subseteq M_{i+1}$ to

$$M_{i} = (N'_{0} + M_{i}) \cap M_{i+1} \subseteq (N'_{1} + M_{i}) \cap M_{i+1} \subseteq \dots \subseteq (N'_{s} + M_{i}) \cap M_{i+1} = M_{i+1},$$

and $N_j \subseteq N_{j+1}$ to

$$N_j = (M_0 + N_j) \cap N_{j+1} \subseteq (M_1 + N_j) \cap N_{j+1} \subseteq \dots \subseteq (M_r + N_j) \cap N_{j+1} = N_{j+1}.$$

Let

$$Q_{ij} = \frac{M_{ij}}{M_{i,j-1}}$$
 and $Q'_{ji} = \frac{N_{ji}}{N_{j,i-1}}$.

Then

$$Q_{ij} \cong Q'_{ji}$$

and so the two new chains (M_{ij}) and (N_{ji}) have the same length and the same multiset of factors. **Example:** Two factorizations of $d = 2^2 3^3$ in \mathbb{Z} are

$$\left(2^2 3^3 \mathbb{Z} \subseteq 2^2 3^2 \mathbb{Z} \subseteq 2^2 \mathbb{Z} \subseteq \mathbb{Z}\right) = \left(M_0 \subseteq M_1 \subseteq M_2 \subseteq M_3\right)$$

and

$$(2^2 3^3 \mathbb{Z} \subseteq 3^3 \mathbb{Z} \subseteq \mathbb{Z}) = (N_0 \subseteq N_1 \subseteq N_2).$$

Then

$$\begin{pmatrix} 2^{2}3^{3}\mathbb{Z} & \stackrel{1}{\subseteq} & 2^{2}3^{3}\mathbb{Z} & \stackrel{3}{\subseteq} & 2^{2}3^{2}\mathbb{Z} \\ 2^{2}3^{2}\mathbb{Z} & \stackrel{1}{\subseteq} & 2^{2}3^{2}\mathbb{Z} & \stackrel{3^{2}}{\subseteq} & 2^{2}\mathbb{Z} \\ 2^{2}\mathbb{Z} & \stackrel{2^{2}}{\subseteq} & \mathbb{Z} & \stackrel{1}{\subseteq} & \mathbb{Z} \end{pmatrix} = \begin{pmatrix} M_{00} & \subseteq & M_{01} & \subseteq & M_{02} \\ M_{10} & \subseteq & M_{11} & \subseteq & M_{12} \\ M_{20} & \subseteq & M_{21} & \subseteq & M_{22} \end{pmatrix}$$

and

$$\begin{pmatrix} 2^2 3^3 \mathbb{Z} \quad \stackrel{1}{\subseteq} \quad 2^2 3^3 \mathbb{Z} \quad \stackrel{1}{\subseteq} \quad 2^2 3^3 \mathbb{Z} \quad \stackrel{2^2}{\subseteq} \quad 3^3 \mathbb{Z} \\ 3^3 \mathbb{Z} \quad \stackrel{3}{\subseteq} \quad 3^2 \mathbb{Z} \quad \stackrel{3^2}{\subseteq} \quad \mathbb{Z} \quad \stackrel{1}{\subseteq} \quad \mathbb{Z} \end{pmatrix} = \begin{pmatrix} N_{00} \quad \subseteq \quad N_{01} \quad \subseteq \quad N_{02} \quad \subseteq \quad N_{03} \\ N_{10} \quad \subseteq \quad N_{11} \quad \subseteq \quad N_{12} \quad \subseteq \quad N_{13} \end{pmatrix}$$

and the succesive quotients of these two series are related by

$$\begin{pmatrix} 1 & 3\\ 1 & 3^2\\ 2^2 & 1 \end{pmatrix}^t = \begin{pmatrix} 1 & 1 & 2^2\\ 3 & 3^2 & 1 \end{pmatrix}.$$

3.14.1 Some proofs

Proposition 3.68. Let N be a submodule of M.

(a) M satisfies ACC if and only if N and M/N satisfy ACC.

- (b) M satisfies DCC if and only if N and M/N satisfy DCC.
- (c) M satisfies both ACC and DCC if and only if N and M/N satisfy both ACC and DCC.
- *Proof.* (a) \Rightarrow : Assume that M satisfies ACC.
- To show: (aa) N satisfies ACC.
- To show: (ab) M/N satsfies ACC.
- (aa) Let $0 = N_0 \subseteq N_1 \subseteq \cdots$ be a chain in \mathcal{S}_N . Since $N \subseteq M$ then $0 = N_0 \subseteq N_1 \subseteq \cdots \subseteq M$ is a chain in \mathcal{S}_M . Since M satisfies ACC then $0 = N_0 \subseteq N_1 \subseteq \cdots$ is finite. So N satisfies ACC.
- (ab) Let $0 = M_0/N \subseteq M_1/N \subseteq \cdots \subseteq M/N$ be a chain in $S_{M/N}$. By the correspondence theorem the chain in $S_{M/N}$ corresponds to a chain $0 \subseteq N = M_0 \subseteq M_1 \subseteq \cdots \subseteq M$ in S_M . Since M satisfies ACC then $0 \subseteq N = M_0 \subseteq M_1 \subseteq \cdots \subseteq M$ is finite. So $0 = M_0/N \subseteq M_1/N \subseteq \cdots \subseteq M/N$ is finite. So M/N satsfies ACC.

(a) \Leftarrow : Assume that N and M/N satisfy ACC. To show: M satsifies ACC. Let $0 = M_0 \subseteq M_1 \subseteq \cdots$ be an ascending chain in \mathcal{S}_0^M . Then

$$0 = \frac{M_0 + N}{N} \subseteq \frac{M_1 + N}{N} \subseteq \dots \subseteq \frac{M}{N} \quad \text{and} \quad 0 = (M_0 \cap N) \subseteq (M_1 \cap N) \subseteq \dots \subseteq N$$

are ascending chains in $\mathcal{S}_0^{M/N}$ and \mathcal{S}_0^N . Let $k \in \mathbb{Z}_{>0}$ such that if $\ell \in \mathbb{Z}_{\geq k}$ then

$$\frac{M_{\ell}+N}{N} = \frac{M_k+N}{N} \quad \text{and} \quad M_{\ell} \cap N = M_k \cap N.$$

By the correspondence theorem, if $\ell \in \mathbb{Z}_{\geq k}$ then

$$M_{\ell} + N = M_k + N$$
 and $M_{\ell} \cap N = M_k \cap N$.

Thus

$$M_{\ell} \cap (M_k + N) = M_{\ell} \cap (M_{\ell} + N) = M_{\ell}$$
 and $M_k + (m_{\ell} \cap N) = M_k + (M_k \cap N) = M_k$.

Since $M_k \subseteq M_\ell$ then the modular law says that

$$M_{\ell} \cap (M_k + N) = M_k + (M_{\ell} \cap N).$$

So $M_k = M_\ell$.

(b) The proof of (b) is similar to the proof of (a), except with ACC replaced by DCC and ⊆ replaced by ⊇.
(c) is the combination of (a) and (b).

Proposition 3.69. Let R be a ring and let M be an R-module.

(a) If M is finitely generated and N is an R-submodule of M then M/N is finitely generated.

(b) M satisfies ACC if and only if every submodule of M is finitely generated.

(c) If R satisfies ACC and M is finitely generated then M satisfies ACC.

(e) If R satisifies DCC and M is finitely generated then M satisfies both ACC and DCC.

Proof. (a) If m_1, \ldots, m_k are generators of M then $m_1 + N, \ldots, m_k + N$ are generators of M/N. (b) \Leftarrow : Assume that every submodule of M is finitely generated. Let $N_1 \subseteq N_2 \subseteq \cdots$ be an ascending chain of submodules of M. To show: There exists $r \in \mathbb{Z}_{>0}$ such that if $\ell \in \mathbb{Z}_{\geq r}$ then $N_\ell = N_r$. Then $N_{\mathrm{un}} = \bigcup_{i \in \mathbb{Z}_{>0}} N_i$ is a finitely generated submodule of MLet x_1, \ldots, x_k be generators of N_{un} and let ℓ_1, \ldots, ℓ_k be such that $x_i \in N_{\ell_i}$. Then $x_1, \ldots, x_k \in N_r$ where $r = \max\{\ell_1, \ldots, \ell_k\}$. So $N_{\mathrm{un}} = \bigcup_{i \in \mathbb{Z}_{>0}} N_i = N_r$ and if $\ell \in \mathbb{Z}_{>r}$ then $N_r = N_\ell$. So M satisfies ACC.

(b) \Rightarrow : Assume that M satisfies ACC and let N be a submodule of M. Then one of the equivalent characterizations of ACC gives that the set of finitely generated submodule of N,

 $\{P \subseteq N \mid P \text{ is finitely generated}\},$ has a maximal element P_{\max} .

To show: $N = P_{\max}$. By definition, $P_{\max} \subseteq N$. To show: $N \subseteq P_{\max}$. Let $x \in N$. Then $P_{\max} + \mathbb{A}x \subseteq N$ and $P_{\max} + \mathbb{A}x$ is finitely generated. So $P_{\max} + \mathbb{A}x \subseteq P_{\max}$. So $x \in P_{\max}$. So $N \subseteq P_{\max}$. So $N \subseteq P_{\max}$. So $N = P_{\max}$. So N is finitely generated. (c) Assume R satisfies ACC and M is finitely generated.

To show: M satsfies ACC.

Since M is finitely generated there exists $n \in \mathbb{Z}_{>0}$ and a surjective homomorphism $\mathbb{A}^{\oplus v} \to M$. Since \mathbb{A} satisfies ACC then $\mathbb{A}^{\oplus n}$ satisfies ACC.

So there is an exact sequence $0 \to K \to \mathbb{A}^{\oplus n} \to M \to 0$ with $\mathbb{A}^{\oplus n}$ satisfying ACC.

By Proposition 4.4(a), K and M satisfy ACC.

So M satisfies $\overline{\text{ACC}}$.

(da) To show: If R satisfies DCC and M is finitely generated then M satisfies DCC. The proof of (da) is the same as the proof of (c) except with ACC replaced by DCC and the inclreasing chains replaced by decreasing chains.

(db) Assume R satisfies DCC and M is finitely generated. To show: M satisfies ACC. Let $M_i = \text{Rad}(R)^i M$.

By (da), M satisfies DCC, and so M_i and M/M_i satisfy DCC.

So M_i/M_{i+1} satisfies DCC and Rad(R) acts on M_i/M_{i+1} by 0.

So M_i/M_{i+1} is a R/Rad(R)-module and thus M_i/M_{i+1} is a finite direct sum of simple submodules. So, by (a), M has a composition series and satisfies both ACC and DCC.