6.11 Finite fields

Theorem 6.21.

(a) The function

$$
\begin{array}{clc}
\{\text { finite fields }\} & \longrightarrow\left\{p^{k} \mid p \in \mathbb{Z}_{>0} \text { is prime, } k \in \mathbb{Z}_{>0}\right\} \\
\mathbb{F} & \longmapsto & \operatorname{Card}(\mathbb{F})
\end{array} \quad \text { is a bijection. }
$$

(b) The finite field $\mathbb{F}_{p^{k}}$ with p^{k} elements is given by
$\mathbb{F}_{p^{k}}$ is the extension of \mathbb{F}_{p} of degree $k, \quad \mathbb{F}_{p^{k}}=\left\{\alpha \in \overline{\mathbb{F}_{p}} \mid \alpha^{p^{k}}-\alpha=0\right\}, \quad \mathbb{F}_{p^{k}}=\left(\overline{\mathbb{F}_{p}}\right)^{F^{k}}$, where $F: \overline{\mathbb{F}_{p}} \rightarrow \overline{\mathbb{F}_{p}}$ is the Frobenius map.

6.12 Cyclotomic polynomials

Let n be a positive integer.

- A primitive nth root of unity is an element $\omega \in \mathbb{C}$ such that $\omega^{n}=1$ and if $m \in \mathbb{Z}_{>0}$ and $m<n$ then $\omega^{m}=1$.
- The nth cyclotomic polynomial is

$$
\Phi_{n}(x)=\prod_{\omega}(x-\omega), \quad \text { where the product is over the primitive } n \text {th roots of unity in } \mathbb{C} .
$$

- The Euler ϕ-function is $\phi: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ given by

$$
\phi(n)=\operatorname{deg}\left(\Phi_{n}(x)\right) .
$$

Since the roots of unity are the primitive d th roots of unity for the positive integers d dividing n then

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) .
$$

Theorem 6.22. Let $n \in \mathbb{Z}_{>0}$.
(a) $\Phi_{n}(x) \in \mathbb{Z}[x]$ and $\Phi_{n}(x)$ is irreducible in $\mathbb{Z}[x]$.
(b) $\phi(n)=\operatorname{deg}\left(\Phi_{n}(x)\right)=\operatorname{Card}\left((\mathbb{Z} / n \mathbb{Z})^{\times}\right)=($the number of primitive nth roots of unity $)$.

Theorem 6.23. Let ω be a primitive nth root of unity. Then $\mathbb{Q}(\omega)$ is the splitting field of $\left\{x^{n}-1\right\}$,

$$
\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\omega)) \cong(\mathbb{Z} / n \mathbb{Z})^{\times} \quad \text { and } \quad \operatorname{Card}\left((\mathbb{Z} / n \mathbb{Z})^{\times}\right)=\phi(n) .
$$

