6.11 Finite fields

Theorem 6.21.

(a) The function

$$\begin{cases}
finite fields \} &\longrightarrow \{p^k \mid p \in \mathbb{Z}_{>0} \text{ is prime, } k \in \mathbb{Z}_{>0}\} \\
\mathbb{F} &\longmapsto \operatorname{Card}(\mathbb{F})
\end{cases} \text{ is a bijection.}$$

(b) The finite field \mathbb{F}_{p^k} with p^k elements is given by

$$\mathbb{F}_{p^k}$$
 is the extension of \mathbb{F}_p of degree k , $\mathbb{F}_{p^k} = \{\alpha \in \overline{\mathbb{F}_p} \mid \alpha^{p^k} - \alpha = 0\}$, $\mathbb{F}_{p^k} = (\overline{\mathbb{F}_p})^{F^k}$, where $F : \overline{\mathbb{F}_p} \to \overline{\mathbb{F}_p}$ is the Frobenius map.

6.12 Cyclotomic polynomials

Let n be a positive integer.

- A primitive *n*th root of unity is an element $\omega \in \mathbb{C}$ such that $\omega^n = 1$ and if $m \in \mathbb{Z}_{>0}$ and m < n then $\omega^m = 1$.
- The *n*th cyclotomic polynomial is

$$\Phi_n(x) = \prod_{\omega} (x - \omega),$$
 where the product is over the primitive *n*th roots of unity in \mathbb{C} .

• The **Euler** ϕ -function is $\phi: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ given by

$$\phi(n) = \deg(\Phi_n(x)).$$

Since the roots of unity are the primitive dth roots of unity for the positive integers d dividing n then

$$x^n - 1 = \prod_{d|n} \Phi_d(x).$$

Theorem 6.22. Let $n \in \mathbb{Z}_{>0}$.

- (a) $\Phi_n(x) \in \mathbb{Z}[x]$ and $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$.
- (b) $\phi(n) = \deg(\Phi_n(x)) = \operatorname{Card}((\mathbb{Z}/n\mathbb{Z})^{\times}) = (\text{the number of primitive nth roots of unity}).$

Theorem 6.23. Let ω be a primitive nth root of unity. Then $\mathbb{Q}(\omega)$ is the splitting field of $\{x^n - 1\}$,

$$\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\omega)) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$$
 and $\operatorname{Card}((\mathbb{Z}/n\mathbb{Z})^{\times}) = \phi(n)$.