1.5 Lecture 5: Finite fields

1.5.1 Some definitions

Let \mathbb{A} be a ring.

• The group of units in \mathbb{A} , or the group of invertible elements of \mathbb{A} is

$$\mathbb{A}^{\times} = \{ a \in \mathbb{A} \mid \text{there exists } a^{-1} \in \mathbb{A} \text{ such that } a^{-1}a = aa^{-1} = 1 \}$$

• The characteristic of \mathbb{A} is $p \in \mathbb{Z}_{>0}$ such that $\ker(\varphi) = p\mathbb{Z}$, where $\varphi \colon \mathbb{Z} \to R$ is the ring homomorphism given by $\varphi(1) = 1$.

$$\begin{array}{ccc} \mathbb{Z} & \stackrel{\varphi}{\to} & \mathbb{A} \\ 1 & \mapsto & 1 \end{array} \quad \text{has } \ker(\varphi) = p\mathbb{Z}. \end{array}$$

Let $\mathbb F$ be a field.

• The **Frobenius map** is the field morphism $F \colon \mathbb{F} \to \mathbb{F}$ given by

if
$$\operatorname{char}(\mathbb{F}) = 0$$
 and $\alpha \in \mathbb{F}$ then $F(\alpha) = \alpha$,
if $p \in \mathbb{Z}_{>0}$ and $\operatorname{char}(\mathbb{F}) = p$ and $\alpha \in \mathbb{F}$ then $F(\alpha) = \alpha^p$

• A **perfect field** is a field \mathbb{F} such that the Frobenius map $F \colon \mathbb{F} \to \mathbb{F}$ is an automorphism.

Theorem 1.11. (Classification of finite fields). The map

Proof. Let \mathbb{K} be a finite field. The ring homomorphism

$$\begin{array}{cccc} \varphi \colon & \mathbb{Z} & \to & \mathbb{K} \\ & 1 & \mapsto & 1 \end{array} \quad \text{ is not injective.} \end{array}$$

Let $p \in \mathbb{Z}_{>0}$ be minimal such that $\varphi(m) = 0$. If $q, r \in \mathbb{Z}_{>0}$ and p = qr then $\varphi(q)\varphi(r) = \varphi(qr) = \varphi(p) = 0$. So q = 1 and r = p or vice versa and p is prime. So $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is a subfield of \mathbb{K} .

So \mathbb{K} is a finite dimensional \mathbb{F}_p -vector space. So there exists $k \in \mathbb{Z}_{>0}$ such that $|\mathbb{K}| = p^k$.

Let $\alpha \in \mathbb{K}$ with $\alpha \neq 0$. Since \mathbb{K}^{\times} is an abelian group of order $p^{k} - 1$ then $\alpha^{p^{k}-1} = 1$. So α is a root of $x^{p_{k}-1} - 1$. There are $p^{k} - 1$ roots of $x^{p^{k}-1} - 1$ (the $(p^{k} - 1)$ th roots of unity) and

$$\operatorname{Card}(\mathbb{K}) = \operatorname{Card}(\mathbb{K}^{\times}) + \operatorname{Card}(\{0\}) = (p^k - 1) + 1 = p^k.$$

 So

$$\mathbb{K} = \{ \alpha \in \overline{\mathbb{F}_p} \mid \alpha^{p^k} = \alpha \}.$$