1.5 Lecture 5: Finite fields

1.5.1 Some definitions

Let \mathbb{A} be a ring.

- The group of units in \mathbb{A}, or the group of invertible elements of \mathbb{A} is

$$
\mathbb{A}^{\times}=\left\{a \in \mathbb{A} \mid \text { there exists } a^{-1} \in \mathbb{A} \text { such that } a^{-1} a=a a^{-1}=1\right\} .
$$

- The characteristic of \mathbb{A} is $p \in \mathbb{Z}_{>0}$ such that $\operatorname{ker}(\varphi)=p \mathbb{Z}$, where $\varphi: \mathbb{Z} \rightarrow R$ is the ring homomorphism given by $\varphi(1)=1$.

$$
\begin{array}{rll}
\mathbb{Z} & \xrightarrow{\varphi} & \mathbb{A} \\
1 & \mapsto & 1
\end{array} \quad \text { has } \operatorname{ker}(\varphi)=p \mathbb{Z} .
$$

Let \mathbb{F} be a field.

- The Frobenius map is the field morphism $F: \mathbb{F} \rightarrow \mathbb{F}$ given by

$$
\begin{gathered}
\text { if } \operatorname{char}(\mathbb{F})=0 \text { and } \alpha \in \mathbb{F} \quad \text { then } F(\alpha)=\alpha, \\
\text { if } p \in \mathbb{Z}_{>0} \text { and } \operatorname{char}(\mathbb{F})=p \text { and } \alpha \in \mathbb{F} \quad \text { then } F(\alpha)=\alpha^{p} .
\end{gathered}
$$

- A perfect field is a field \mathbb{F} such that the Frobenius map $F: \mathbb{F} \rightarrow \mathbb{F}$ is an automorpihsm.

Theorem 1.11. (Classification of finite fields). The map

$$
\begin{array}{rlc}
\mathbb{F}:\left\{p^{k} \mid p, k \in \mathbb{Z}_{>0}, p \text { is prime }\right\} & \longleftrightarrow & \text { \{finite fields }\} \\
\operatorname{Card}(\mathbb{K}) & \longleftrightarrow & \mathbb{K} \\
p & \longmapsto & \mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z} \\
p^{k} & \longmapsto \mathbb{F}_{p^{k}}=\left\{\alpha \in \mathbb{F}_{p} \mid \alpha^{p^{k}}=\alpha\right\}
\end{array}
$$

Proof. Let \mathbb{K} be a finite field.
The ring homomorphism

$$
\begin{array}{rllc}
\varphi: & \mathbb{Z} & \rightarrow \mathbb{K} \\
1 & \mapsto & 1
\end{array}
$$

is not injective.
Let $p \in \mathbb{Z}_{>0}$ be minimal such that $\varphi(m)=0$.
If $q, r \in \mathbb{Z}_{>0}$ and $p=q r$ then $\varphi(q) \varphi(r)=\varphi(q r)=\varphi(p)=0$.
So $q=1$ and $r=p$ or vice versa and p is prime.
So $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ is a subfield of \mathbb{K}.
So \mathbb{K} is a finite dimensional \mathbb{F}_{p}-vector space.
So there exists $k \in \mathbb{Z}_{>0}$ such that $|\mathbb{K}|=p^{k}$.
Let $\alpha \in \mathbb{K}$ with $\alpha \neq 0$.
Since \mathbb{K}^{\times}is an abelian group of order $p^{k}-1$ then $\alpha^{p^{k}-1}=1$.
So α is a root of $x^{p_{k}-1}-1$.
There are $p^{k}-1$ roots of $x^{p^{k}-1}-1$ (the $\left(p^{k}-1\right)$ th roots of unity) and

$$
\operatorname{Card}(\mathbb{K})=\operatorname{Card}\left(\mathbb{K}^{\times}\right)+\operatorname{Card}(\{0\})=\left(p^{k}-1\right)+1=p^{k} .
$$

So

$$
\mathbb{K}=\left\{\alpha \in \overline{\mathbb{F}_{p}} \mid \alpha^{p^{k}}=\alpha\right\} .
$$

