2.4 Proof of the relations between finiteness conditions

Proposition 2.5. Let N be a submodule of M.

(a) M satisfies ACC if and only if N and M/N satisfy ACC.

(b) M satisfies DCC if and only if N and M/N satisfy DCC.

- (c) M satisfies both ACC and DCC if and only if N and M/N satisfy both ACC and DCC.
- *Proof.* (a) \Rightarrow : Assume that M satisfies ACC.
- To show: (aa) N satisfies ACC.
- To show: (ab) M/N satisfies ACC.
- (aa) Let $0 = N_0 \subseteq N_1 \subseteq \cdots$ be a chain in $\mathcal{S}_{[0,N]}$. Since $N \subseteq M$ then $0 = N_0 \subseteq N_1 \subseteq \cdots \subseteq M$ is a chain in $\mathcal{S}_{[0,M]}$. Since M satisfies ACC then $0 = N_0 \subseteq N_1 \subseteq \cdots$ is finite. So N satisfies ACC.
- (ab) Let $0 = M_0/N \subseteq M_1/N \subseteq \cdots \subseteq M/N$ be a chain in $\mathcal{S}_{[0,M/N]}$. By the correspondence theorem the chain in $\mathcal{S}_{[0,M/N]}$ corresponds to a chain $0 \subseteq N = M_0 \subseteq M_1 \subseteq \cdots \subseteq M$ in $\mathcal{S}_{[0,M]}$. Since M satisfies ACC then $0 \subseteq N = M_0 \subseteq M_1 \subseteq \cdots \subseteq M$ is finite. So $0 = M_0/N \subseteq M_1/N \subseteq \cdots \subseteq M/N$ is finite. So M/N satsfies ACC.

(a) \Leftarrow : Assume that N and M/N satisfy ACC. To show: M satsifies ACC. Let $0 = M_0 \subseteq M_1 \subseteq \cdots$ be an ascending chain in $\mathcal{S}_{[0,M]}$. Then

$$0 = \frac{M_0 + N}{N} \subseteq \frac{M_1 + N}{N} \subseteq \dots \subseteq \frac{M}{N} \quad \text{and} \quad 0 = (M_0 \cap N) \subseteq (M_1 \cap N) \subseteq \dots \subseteq N$$

are ascending chains in $S_{[0,M/N]}$ and $S_{[0,N]}$. Let $k \in \mathbb{Z}_{>0}$ such that if $\ell \in \mathbb{Z}_{\geq k}$ then

$$\frac{M_{\ell}+N}{N} = \frac{M_k+N}{N} \quad \text{and} \quad M_{\ell} \cap N = M_k \cap N.$$

By the correspondence theorem, if $\ell \in \mathbb{Z}_{>k}$ then

$$M_{\ell} + N = M_k + N$$
 and $M_{\ell} \cap N = M_k \cap N$.

Thus

$$M_{\ell} \cap (M_k + N) = M_{\ell} \cap (M_{\ell} + N) = M_{\ell}$$
 and $M_k + (m_{\ell} \cap N) = M_k + (M_k \cap N) = M_k$

Since $M_k \subseteq M_\ell$ then the modular law says that

$$M_{\ell} \cap (M_k + N) = M_k + (M_{\ell} \cap N).$$

So $M_k = M_\ell$.

(b) The proof of (b) is similar to the proof of (a), except with ACC replaced by DCC and ⊆ replaced by ⊇.
(c) is the combination of (a) and (b).

Proposition 2.6. Let R be a ring and let M be an R-module.

(a) If M is finitely generated and N is an R-submodule of M then M/N is finitely generated.

(b) M satisfies ACC if and only if every submodule of M is finitely generated.

(c) If R satisfies ACC and M is finitely generated then M satisfies ACC.

(e) If R satisifies DCC and M is finitely generated then M satisfies both ACC and DCC.

Proof. (a) If m_1, \ldots, m_k are generators of M then $m_1 + N, \ldots, m_k + N$ are generators of M/N. (b) \Leftarrow : Assume that every submodule of M is finitely generated. Let $N_1 \subseteq N_2 \subseteq \cdots$ be an ascending chain of submodules of M. To show: There exists $r \in \mathbb{Z}_{>0}$ such that if $\ell \in \mathbb{Z}_{\geq r}$ then $N_\ell = N_r$. Then $N_{\mathrm{un}} = \bigcup_{i \in \mathbb{Z}_{>0}} N_i$ is a finitely generated submodule of MLet x_1, \ldots, x_k be generators of N_{un} and let ℓ_1, \ldots, ℓ_k be such that $x_i \in N_{\ell_i}$. Then $x_1, \ldots, x_k \in N_r$ where $r = \max\{\ell_1, \ldots, \ell_k\}$. So $N_{\mathrm{un}} = \bigcup_{i \in \mathbb{Z}_{>0}} N_i = N_r$ and if $\ell \in \mathbb{Z}_{>r}$ then $N_r = N_\ell$. So M satisfies ACC.

(b) \Rightarrow : Assume that M satisfies ACC and let N be a submodule of M. Then one of the equivalent characterizations of ACC gives that the set of finitely generated submodule of N,

 $\{P \subseteq N \mid P \text{ is finitely generated}\},$ has a maximal element P_{\max} .

To show: $N = P_{\max}$. By definition, $P_{\max} \subseteq N$. To show: $N \subseteq P_{\max}$. Let $x \in N$. Then $P_{\max} + \mathbb{A}x \subseteq N$ and $P_{\max} + \mathbb{A}x$ is finitely generated. So $P_{\max} + \mathbb{A}x \subseteq P_{\max}$. So $x \in P_{\max}$. So $N \subseteq P_{\max}$. So $N \subseteq P_{\max}$. So $N = P_{\max}$. So N is finitely generated. (c) \Rightarrow : Assume R satisfies ACC and M is finitely generated. To show: M satsfies ACC.

Since M is finitely generated there exists $n \in \mathbb{Z}_{>0}$ and a surjective homomorphism $\mathbb{A}^{\oplus v} \to M$. Since \mathbb{A} satisfies ACC then $\mathbb{A}^{\oplus n}$ satisfies ACC.

So there is an exact sequence $0 \to K \to \mathbb{A}^{\oplus n} \to M \to 0$ with $\mathbb{A}^{\oplus n}$ satisfying ACC.

By Proposition 4.4(a), K and M satisfy ACC.

So M satisfies $\overline{\text{ACC}}$.

(da) To show: If R satisfies DCC and M is finitely generated then M satisfies DCC. The proof of (da) is the same as the proof of (c) except with ACC replaced by DCC and the inclreasing chains replaced by decreasing chains.

(db) Assume R satisfies DCC and M is finitely generated. To show: M satisfies ACC. Let $M_i = \text{Rad}(R)^i M$.

By (da), M satisfies DCC, and so M_i and M/M_i satisfy DCC. So M_i/M_{i+1} satisfies DCC and Rad(R) acts on M_i/M_{i+1} by 0.

So M_i/M_{i+1} is a R/Rad(R)-module and thus M_i/M_{i+1} is a finite direct sum of simple submodules. So, by (a), M has a composition series and satisfies both ACC and DCC.