6.2.3 Fields of fractions

Definition. Let R be an integral domain.

• A fraction is an expression $\frac{a}{b}$ with $a \in R$, $b \in R$ and $b \neq 0$.

Proposition 6.5. Let R be an integral domain. Let $F_R = \left\{\frac{a}{b} \mid a, b \in R, b \neq 0\right\}$ be the set of fractions. Define two fractions $\frac{a}{b}$, $\frac{c}{d}$ to be equal if ad = bc, i.e.

$$\frac{a}{b} = \frac{c}{d}$$
 if $ad = bc$.

Then equality of fractions is an equivalence relation on F_R .

Proposition 6.6. Let R be an integral domain. Let $F_R = \left\{ \frac{a}{b} \mid a, b \in R, b \neq 0 \right\}$ be its set of fractions with equality of fractions be as defined in Proposition 6.5. Then the operations $+: F_R \times F_R \to F$ and $\times: F_R \times F_R \to F_R$ given by

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ are well defined.

Theorem 6.7. Let R be an integral domain and let $F_R = \left\{\frac{a}{b} \mid a \in R, b \in R - \{0\}\right\}$ be the set of fractions with equality of fractions be as defined in Proposition 6.5 and let operations $+: F_R \times F_R \to F_R$ and $\times: F_R \times F_R \to F_R$ be as given in Proposition 6.6. Then F_R is a field.

Definition. Let R be an integral domain.

• The field of fractions of R is the set $F_R = \left\{\frac{m}{n} \mid m, n \in R, n \neq 0\right\}$ of fractions with equality of fractions defined by

$$\frac{n}{n} = \frac{p}{q}$$
 if $mq = np$

and operations of addition $+: F_R \times F_R \to F_R$ and multiplication $\times: F_R \times F_R \to F_R$ defined by

$$\frac{m}{n} + \frac{p}{q} = \frac{mq + np}{pq}$$
 and $\frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$

HW: Give an example of an integral domain R and its field of fractions.

Proposition 6.8. Let R be an integral domain with identity 1 and let F_R be its field of fractions. Then the map $\varphi \colon R \to F_R$ given by

$$\begin{array}{rccc} \varphi \colon & R & \to & F_R \\ & r & \mapsto & \frac{r}{1} \end{array}$$

is an injective ring homomorphism.