### 6.2.3 Fields of fractions

Definition. Let $R$ be an integral domain.

- A fraction is an expression $\frac{a}{b}$ with $a \in R, b \in R$ and $b \neq 0$.

Proposition 6.5. Let $R$ be an integral domain. Let $F_{R}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in R, b \neq 0\right\}$ be the set of fractions. Define two fractions $\frac{a}{b}$, $\frac{c}{d}$ to be equal if $a d=b c$, i.e.

$$
\frac{a}{b}=\frac{c}{d} \quad \text { if } a d=b c .
$$

Then equality of fractions is an equivalence relation on $F_{R}$.
Proposition 6.6. Let $R$ be an integral domain. Let $F_{R}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in R, b \neq 0\right\}$ be its set of fractions with equality of fractions be as defined in Proposition 6.5. Then the operations $+: F_{R} \times F_{R} \rightarrow F$ and $\times: F_{R} \times F_{R} \rightarrow F_{R}$ given by

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \quad \text { and } \quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \quad \text { are well defined. }
$$

Theorem 6.7. Let $R$ be an integral domain and let $F_{R}=\left\{\left.\frac{a}{b} \right\rvert\, a \in R, b \in R-\{0\}\right\}$ be the set of fractions with equality of fractions be as defined in Proposition 6.5 and let operations $+: F_{R} \times F_{R} \rightarrow F_{R}$ and $\times: F_{R} \times F_{R} \rightarrow F_{R}$ be as given in Proposition 6.6. Then $\bar{F}_{R}$ is a field.

Definition. Let $R$ be an integral domain.

- The field of fractions of $R$ is the set $F_{R}=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in R, n \neq 0\right\}$ of fractions with equality of fractions defined by

$$
\frac{m}{n}=\frac{p}{q} \quad \text { if } m q=n p
$$

and operations of addition $+: F_{R} \times F_{R} \rightarrow F_{R}$ and multiplication $\times: F_{R} \times F_{R} \rightarrow F_{R}$ defined by

$$
\frac{m}{n}+\frac{p}{q}=\frac{m q+n p}{p q} \quad \text { and } \quad \frac{m}{n} \cdot \frac{p}{q}=\frac{m p}{n q} .
$$

HW: Give an example of an integral domain $R$ and its field of fractions.
Proposition 6.8. Let $R$ be an integral domain with identity 1 and let $F_{R}$ be its field of fractions. Then the map $\varphi: R \rightarrow F_{R}$ given by

$$
\begin{array}{ll}
\varphi: \quad R & \rightarrow \\
r & F_{R} \\
r & \mapsto \\
\frac{r}{1}
\end{array}
$$

is an injective ring homomorphism.

