6.2 Fields, Integral Domains, Fields of Fractions

6.2.1 R / M is a field $\Longleftrightarrow M$ is a maximal ideal.

Definition.

- A field is a commutative ring F such that if $x \in F$ and $x \neq 0$ then there exists an element $x^{-1} \in F$ such that $x x^{-1}=1$.
- A proper ideal is an ideal of R that is not the zero ideal (0) and not the whole ring R.
- A maximal ideal is an ideal M of a ring R such that
(a) $M \neq R$,
(b) If M^{\prime} is an ideal of R and $M \subseteq M^{\prime} \neq R$ then $M=M^{\prime}$.

Lemma 6.1. Let F be a commutative ring. Then F is a field if and only if the only ideals of F are $\{0\}$ and F.

Theorem 6.2. Let R be a commutative ring and let M be an ideal of R. Then

$$
R / M \text { is a field if and only if } \quad M \text { is a maximal ideal. }
$$

6.2.2 R / P is an integral domain $\Longleftrightarrow P$ is a prime ideal.

Definition.

- An integral domain is a commutative ring R such that if $a, b \in R$ and $a b=0$ then either $a=0$ or $b=0$.
- A zero divisor in a ring R is an element $a \in R$ such that there exists $b \in R$ with $\neq 0$ and $a b=0$.
- A prime ideal is an ideal P in a commutative ring R such that if $a, b \in R$ and $a b \in P$ then either $a \in P$ or $b \in P$.

HW: Show that an integral domain is a commutative ring with no zero divisors except 0 .
Proposition 6.3. (Cancellation Law) Let R be an integral domain. If $a, b, c \in R$ and $c \neq 0$ and $a c=b c$ then $a=b$.

Theorem 6.4. Let R be a commutative ring and let P be an ideal of R. Then

$$
R / P \text { is an integral domain if and only if } P \text { is a prime ideal. }
$$

