6.2 Fields, Integral Domains, Fields of Fractions

6.2.1 R/M is a field $\iff M$ is a maximal ideal.

Definition.

- A field is a commutative ring F such that if $x \in F$ and $x \neq 0$ then there exists an element $x^{-1} \in F$ such that $xx^{-1} = 1$.
- A proper ideal is an ideal of R that is not the zero ideal (0) and not the whole ring R.
- A maximal ideal is an ideal M of a ring R such that
 - (a) $M \neq R$,
 - (b) If M' is an ideal of R and $M \subseteq M' \neq R$ then M = M'.

Lemma 6.1. Let F be a commutative ring. Then F is a field if and only if the only ideals of F are $\{0\}$ and F.

Theorem 6.2. Let R be a commutative ring and let M be an ideal of R. Then

R/M is a field if and only if M is a maximal ideal.

6.2.2 R/P is an integral domain \iff P is a prime ideal.

Definition.

- An integral domain is a commutative ring R such that if $a, b \in R$ and ab = 0 then either a = 0 or b = 0.
- A zero divisor in a ring R is an element $a \in R$ such that there exists $b \in R$ with $\neq 0$ and ab = 0.
- A prime ideal is an ideal P in a commutative ring R such that if $a, b \in R$ and $ab \in P$ then either $a \in P$ or $b \in P$.

HW: Show that an integral domain is a commutative ring with no zero divisors except 0.

Proposition 6.3. (Cancellation Law) Let R be an integral domain. If $a, b, c \in R$ and $c \neq 0$ and ac = bc then a = b.

Theorem 6.4. Let R be a commutative ring and let P be an ideal of R. Then

R/P is an integral domain if and only if P is a prime ideal.