1.15 Lecture 13: Euclidean Domains, PIDs and UFDs

1.15.1 *R* is a Euclidean domain \implies *R* is a PID

Definition. Let $\mathbb{Z}_{\geq 0} = \{0, 1, 2, ...\}$ be the set of nonnegative integers.

• A Euclidean domain is an integral domain R with a function

$$\sigma: R - \{0\} \to \mathbb{Z}_{\geq 0},$$
 a size function

such that if $a, b \in R$ and $a \neq 0$ then there exist $q, r \in R$ such that

b = aq + r, where either r = 0 or $\sigma(r) < \sigma(a)$.

• Let R be a commutative ring. A **principal ideal** is an ideal generated by a single element.

A principal ideal domain (or PID) is an integral domain for which every ideal is principal.
Theorem 1.64. If R is a Euclidean domain then R is a principal ideal domain.

HW: Show that $\mathbb{Z}\left[\frac{1}{2} + \frac{1}{2}\sqrt{-19}\right]$ is a PID that is not a Euclidean domain.

Proposition 1.65. Let \mathbb{A} be a PID. Then \mathbb{A} satisfies ACC.

1.15.2 R is a PID \Longrightarrow R is a UFD

Definition. Let R be an integral domain.

- A unit is an element $a \in R$ such that aR = R.
- An element $p \in R$ is **irreducible** if pR if $p \neq 0$, $pR \neq R$ and R/pR is a simple *R*-module.
- A unique factorization domain (or UFD) is an integral domain R such that
 - (a) If $x \in R$ then there exist irreducible $p_1, \ldots, p_n \in R$ such that $x = p_1 \cdots p_n$.
 - (b) If $x \in R$ and $x = p_1 \cdots p_n = uq_1 \cdots q_m$ where $u \in R$ is a unit and $p_1, \ldots, p_n, q_1, \ldots, q_m \in R$ are irreducible then m = n and there exists a permutation $\sigma \colon \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$ and units $u_1, \ldots, u_n \in R$ such that

if $i \in \{1, \ldots, n\}$ then $q_i = u_i p_{\sigma(i)}$.

The following theorem is a consequence of the Jordan-Hölder Theorem.

Theorem 1.66. If R is a principal ideal domain then R is a unique factorization domain.

HW: Show that $\mathbb{C}[x, y]$ and $\mathbb{Z}[x]$ are UFDs that are not PIDs.

HW: Show that if R is a PID and $p \in R$ then p is irreducible if and only if pR is a maximal ideal.

HW: Show that if R is a UFD and $p \in R$ is irreducible then pR is a prime ideal.

1.15.3 Some Proofs

Theorem 1.67. A Euclidean domain is a principal ideal domain.

Proof. Assume R is a Euclidean domain with size function $\sigma: (R - \{0\}) \to \mathbb{Z}_{\geq 0}$. Let I be an ideal of R. To show: There exists $a \in R$ such that I = aR. Case 1: $I = \{0\}$. Then I = 0R. Case 2: $I \neq \{0\}$. Let $a \in I$, $a \neq 0$, such that $\sigma(a)$ is as small as possible. To show: I = aR. To show: (a) $I \subseteq aR$. (b) $aR \subseteq I$. (a) Let $b \in I$. To show: $b \in (a)$. Then there exist $q, r \in R$ such that b = aq + r where either r = 0 or $\sigma(r) < \sigma(a)$. Since r = b - aq and $b \in I$ and $a \in I$ then $r \in I$. Since $a \in I$ is such that $\sigma(a)$ is as small as possible we cannot have $\sigma(r) < \sigma(a)$. So r = 0. So b = aq. So $b \in aR$. So $I \subseteq aR$. (b) To show: $aR \subseteq I$. Since $a \in I$ then $aR \subseteq I$. So I = aR.

So every ideal I of R is a principal ideal.

So R is a principal ideal domain.

Proposition 1.68. Let \mathbb{A} be a PID. Then \mathbb{A} satisfies ACC.

Proof. Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain of ideals in \mathbb{A} . To show: There exists $k \in \mathbb{Z}_{>0}$ and $n \in \mathbb{Z}_{>k}$ then $J_n = J_k$. Let

$$I_{\mathrm{un}} = \bigcup_{j \in \mathbb{Z}_{>0}} I_j.$$

Then I_{un} is an ideal of \mathbb{A} .

Since A is a PID then there exists $d \in A$ such that $I_{un} = dA$. To show: There exists $k \in \mathbb{Z}_{>0}$ and $n \in \mathbb{Z}_{>k}$ then $I_n = I_k$. Let $k \in \mathbb{Z}_{>0}$ such that $d \in I_k$. To show: If $n \in \mathbb{Z}_{>k}$ then $I_n = I_k$. Assume $n \in \mathbb{Z}_{>k}$. Then $I_k \subseteq I_n \subseteq I_{un} = dA \subseteq I_k$.

So $I_n = I_k$. So \mathbb{A} satisfies ACC.