6.4 Euclidean Domains, PIDs and UFDs

6.4.1 R is a Euclidean domain $\implies R$ is a PID

Definition. Let $\mathbb{Z}_{\geq 0} = \{0, 1, 2, ...\}$ be the set of nonnegative integers.

• A Euclidean domain is an integral domain R with a function

$$\sigma: R - \{0\} \to \mathbb{Z}_{\geq 0},$$
 a size function

such that if $a, b \in R$ and $a \neq 0$ then there exist $q, r \in R$ such that

b = aq + r, where either r = 0 or $\sigma(r) < \sigma(a)$.

• Let R be a commutative ring. A **principal ideal** is an ideal generated by a single element.

• A principal ideal domain (or PID) is an integral domain for which every ideal is principal. Theorem 6.11. If R is a Euclidean domain then R is a principal ideal domain.

HW: Show that $\mathbb{Z}[\frac{1}{2} + \frac{1}{2}\sqrt{-19}]$ is a PID that is not a Euclidean domain.

6.4.2 R is a PID $\implies R$ is a UFD

Definition. Let R be an integral domain.

- A unit is an element $a \in R$ such that aR = R.
- An element $p \in R$ is irreducible if pR if $p \neq 0$, $pR \neq R$ and R/pR is a simple R-module.
- A unique factorization domain (or UFD) is an integral domain R such that
 - (a) If $x \in R$ then there exist irreducible $p_1, \ldots, p_n \in R$ such that $x = p_1 \cdots p_n$.
 - (b) If $x \in R$ and $x = p_1 \cdots p_n = uq_1 \cdots q_m$ where $u \in R$ is a unit and $p_1, \ldots, p_n, q_1, \ldots, q_m \in R$ are irreducible then m = n and there exists a permutation $\sigma \colon \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$ and units $u_1, \ldots, u_n \in R$ such that

if
$$i \in \{1, \ldots, n\}$$
 then $q_i = u_i p_{\sigma(i)}$.

The following theorem is a consequence of the Jordan-Hölder Theorem.

Theorem 6.12. If R is a principal ideal domain then R is a unique factorization domain.

HW: Show that $\mathbb{C}[x, y]$ and $\mathbb{Z}[x]$ are UFDs that are not PIDs.

HW: Show that if R is a PID and $p \in R$ then p is irreducible if and only if pR is a maximal ideal.

HW: Show that if R is a UFD and $p \in R$ is irreducible then pR is a prime ideal.