1.6 Lecture 6: Cyclotomic polynomials and cyclotomic extensions

Let n be a positive integer.

- A primitive nth root of unity is an element $\omega \in \mathbb{C}$ such that $\omega^{n}=1$ and if $m \in \mathbb{Z}_{>0}$ and $m<n$ then $\omega^{m} \neq 1$.
- The nth cyclotomic polynomial is

$$
\Phi_{n}(x)=\prod_{\omega}(x-\omega), \quad \text { where the product is over the primitive } n \text {th roots of unity in } \mathbb{C} .
$$

- The Euler ϕ-function is $\phi: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ given by

$$
\phi(n)=\operatorname{deg}\left(\Phi_{n}(x)\right) .
$$

Since the roots of unity are the primitive d th roots of unity for the positive integers d dividing n then

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) .
$$

HW: Use this formula, and induction on n, to show that $\Phi_{n}(x) \in \mathbb{Q}[x]$.
HW: Show that $\Phi_{n}(x)=m_{\omega, \mathbb{Q}}(x)$, where $\omega=e^{\frac{2 \pi i}{n}}$.
HW: Let $\omega=e^{\frac{2 \pi i}{n}}$. Show that $\mathbb{Q}(\omega)$ is the splitting field of $\Phi_{n}(x)$ over \mathbb{Q}.
HW: Show that $\Phi_{n}(x)$ is irreduciible in $\mathbb{Q}[x]$.
HW:. Let $\omega=e^{\frac{2 \pi i}{n}}$. Show that $\mathbb{Q}(\omega) \supseteq \mathbb{Q}$ is a Galois extension.
HW: Let $\omega=e^{\frac{2 \pi i}{n}}$. Show that $\left|\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\omega))\right|=\phi(n)$.
HW: Let $\omega=e^{\frac{2 \pi i}{n}}$. Show that $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\omega)) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$.
Theorem 1.12. Let $n \in \mathbb{Z}_{>0}$.
(a) $\Phi_{n}(x) \in \mathbb{Z}[x]$ and $\Phi_{n}(x)$ is irreducible in $\mathbb{Z}[x]$.
(b) $\phi(n)=\operatorname{deg}\left(\Phi_{n}(x)\right)=\operatorname{Card}\left((\mathbb{Z} / n \mathbb{Z})^{\times}\right)=($the number of primitive nth roots of unity) .

Theorem 1.13. Let ω be a primitive nth root of unity. Then
$\mathbb{Q}(\omega)$ is the splitting field of $f(x)=x^{n}-1$ over \mathbb{Q},

$$
\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\omega)) \cong(\mathbb{Z} / n \mathbb{Z})^{\times} \quad \text { and } \quad \operatorname{Card}\left((\mathbb{Z} / n \mathbb{Z})^{\times}\right)=\phi(n) .
$$

