1.6 Lecture 6: Cyclotomic polynomials and cyclotomic extensions

Let n be a positive integer.

- A primitive *n*th root of unity is an element $\omega \in \mathbb{C}$ such that $\omega^n = 1$ and if $m \in \mathbb{Z}_{>0}$ and m < n then $\omega^m \neq 1$.
- The *n*th cyclotomic polynomial is

 $\Phi_n(x) = \prod_{\omega} (x - \omega),$ where the product is over the primitive *n*th roots of unity in \mathbb{C} .

• The Euler ϕ -function is $\phi \colon \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ given by

$$\phi(n) = \deg(\Phi_n(x)).$$

Since the roots of unity are the primitive dth roots of unity for the positive integers d dividing n then

$$x^n - 1 = \prod_{d|n} \Phi_d(x).$$

HW: Use this formula, and induction on n, to show that $\Phi_n(x) \in \mathbb{Q}[x]$.

HW: Show that $\Phi_n(x) = m_{\omega,\mathbb{Q}}(x)$, where $\omega = e^{\frac{2\pi i}{n}}$.

HW: Let $\omega = e^{\frac{2\pi i}{n}}$. Show that $\mathbb{Q}(\omega)$ is the splitting field of $\Phi_n(x)$ over \mathbb{Q} .

HW: Show that $\Phi_n(x)$ is irreducible in $\mathbb{Q}[x]$.

HW: Let $\omega = e^{\frac{2\pi i}{n}}$. Show that $\mathbb{Q}(\omega) \supseteq \mathbb{Q}$ is a Galois extension.

HW: Let
$$\omega = e^{\frac{2\pi i}{n}}$$
. Show that $|\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\omega))| = \phi(n)$.

HW: Let $\omega = e^{\frac{2\pi i}{n}}$. Show that $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\omega)) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Theorem 1.12. Let $n \in \mathbb{Z}_{>0}$.

(a) $\Phi_n(x) \in \mathbb{Z}[x]$ and $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$.

(b) $\phi(n) = \deg(\Phi_n(x)) = \operatorname{Card}((\mathbb{Z}/n\mathbb{Z})^{\times}) = (\text{the number of primitive nth roots of unity}).$

Theorem 1.13. Let ω be a primitive nth root of unity. Then

$$\mathbb{Q}(\omega)$$
 is the splitting field of $f(x) = x^n - 1$ over \mathbb{Q} ,
 $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\omega)) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$ and $\operatorname{Card}((\mathbb{Z}/n\mathbb{Z})^{\times}) = \phi(n)$.