2.22 Proof of the Chinese remainder theorem

Theorem 2.28. (Chinese remainder theorem) Let \mathbb{A} be a PID and let $d \in \mathbb{A}$.

$$
\text { Assume } \quad d=p q \quad \text { with } \quad \operatorname{gcd}(p, q)=1 \text {. }
$$

Then there exist $r, s \in A$ such that $1=p r+q s$ and

$$
\begin{aligned}
\frac{\mathbb{A}}{d \mathbb{A}} & \xrightarrow{\longrightarrow} \quad \frac{\mathbb{A}}{p \mathbb{A}} \oplus \frac{\mathbb{A}}{q \mathbb{A}} \\
p r+p q \mathbb{A} & \mapsto(0+p \mathbb{A}, 1+q \mathbb{A}) \\
q s+p q \mathbb{A} & \mapsto(1+p \mathbb{A}, 0+q \mathbb{A}) \\
1+p q \mathbb{A} & \mapsto(1+p \mathbb{A}, 1+q \mathbb{A})
\end{aligned}
$$

Proof. Let $r, s \in \mathbb{A}$ such that $p r+s q=1$. Then

$$
\begin{aligned}
\left(\begin{array}{cc}
1 & 0 \\
0 & p q
\end{array}\right) & =\left(\begin{array}{cc}
1 & 0 \\
-q s & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
q s & p q
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-q s & 1
\end{array}\right)\left(\begin{array}{cc}
p r+q s & 0 \\
q s & p q
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
-q s & 1
\end{array}\right)\left(\begin{array}{cc}
p & q \\
0 & q
\end{array}\right)\left(\begin{array}{cc}
r & -q \\
s & p
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-q s & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
p & 0 \\
0 & q
\end{array}\right)\left(\begin{array}{cc}
r & -q \\
s & p
\end{array}\right) \\
& =P\left(\begin{array}{cc}
p & 0 \\
0 & q
\end{array}\right) Q, \quad \text { where } P=\left(\begin{array}{cc}
1 & 1 \\
-q s & 1-q s
\end{array}\right) \text { and } Q=\left(\begin{array}{cc}
r & -q \\
s & p
\end{array}\right) .
\end{aligned}
$$

The \mathbb{A}-module $\frac{\mathbb{A}}{d \mathbb{A}}$ is given by generators m_{1}, m_{2} with relations $1 \cdot m_{1}=0$ and $d m_{2}=0$. Then let

$$
b_{1}=r m_{1}-q m_{2}, \quad b_{2}=s m_{1}+p m_{2} \quad \text { so that } \quad m_{1}=p b_{1}+q b_{2}, \quad m_{2}=-s m_{1}+r m_{2} .
$$

Then

$$
p b_{1}=p r m_{1}-p q m_{2}=0-d m_{2}=0 \quad \text { and } \quad q b_{2}=-q s m_{1}+q p m_{2}=0+d m_{2}=0
$$

so that b_{1}, b_{2} are generators of the module $\frac{\mathbb{A}}{p \mathbb{A}} \oplus \frac{\mathbb{A}}{q \mathbb{A}}$. Thus

$$
\frac{\mathbb{A}}{p \mathbb{A}} \oplus \frac{\mathbb{A}}{q \mathbb{A}} \cong \frac{\mathbb{A}}{1 \cdot \mathbb{A}} \oplus \frac{\mathbb{A}}{p q \mathbb{A}}=0 \oplus \frac{\mathbb{A}}{p q \mathbb{A}}=\frac{\mathbb{A}}{p q \mathbb{A}} .
$$

