19.5.3 Algebraic, transcendental, normal, separable and perfect

- 26. Show that $\alpha = 2\pi i$ is algebraic over \mathbb{R} and transcendental over \mathbb{Q} .
- 27. Give an example of a field of characteristic p such that the Frobenius map is not an automorphism.
- 28. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$.
 - (a) Carefully define what it means for α to be algebraic over \mathbb{F} .
 - (b) Carefully define what it means for α to be transcendental over \mathbb{F} .
 - (c) Carefully define what it means for α to be separable over \mathbb{F} .
 - (d) Carefully define what it means for α to be normal over \mathbb{F} .
 - (e) Carefully define what it means for α to be Galois over \mathbb{F} .
- 29. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that if α is algebraic over \mathbb{F} then $\mathbb{F}(\alpha)$ is a finite extension of \mathbb{F} .
- 30. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that if α is transcendental over \mathbb{F} then $\mathbb{F}(\alpha)$ is not a finite extension of \mathbb{F} .
- 31. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$.
 - (a) Carefully define what it means for α to be algebraic over \mathbb{F} .
 - (b) Carefully define what it means for α to be transcendental over \mathbb{F} .
 - (c) Carefully define what it means for α to be separable over \mathbb{F} .
 - (d) Carefully define what it means for α to be normal over \mathbb{F} .
 - (e) Carefully define what it means for α to be Galois over \mathbb{F} .
- 32. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields.
 - (a) Carefully define what it means for \mathbb{E} to be a finite extension of \mathbb{F} .
 - (b) Carefully define what it means for \mathbb{E} to be an algebraic extension of \mathbb{F} .
 - (c) Carefully define what it means for \mathbb{E} to be a separable extension of \mathbb{F} .
 - (d) Carefully define what it means for \mathbb{E} to be a normal extension of \mathbb{F} .
 - (e) Carefully define what it means for \mathbb{E} to be a Galois extension of \mathbb{F} .
- Determine which properties ℝ/Q and C/Q and ℝ/Q have (finite, algebraic, separable, normal, Galois).
- 34. Show that $2^{\frac{1}{3}}$ is algebraic over \mathbb{Q} and find the minimal polynomial.
- 35. Show that $\sqrt{3} + \sqrt{2}$ is algebraic over \mathbb{Q} and find the minimal polynomial.
- 36. Show that $\frac{1}{2}(\sqrt{5}+1)$ is algebraic over \mathbb{Q} and find the minimal polynomial.
- 37. Show that $\frac{1}{2}(\sqrt{3}-1)$ is algebraic over \mathbb{Q} and find the minimal polynomial.
- 38. Prove that

$$\sum_{n \in \mathbb{Z}_{>\geq 0}} 10^{-n!} \qquad \text{is transcendental over } \mathbb{Q}.$$

- 39. Prove that e is transcendental over \mathbb{Q} .
- 40. Prove that π is transcendental over \mathbb{Q} .
- 41. Let $\mathbb{K} \supseteq \mathbb{F}$ be an extension. Show that the set of elements of \mathbb{K} that are algebraic over \mathbb{F} is a subfield of \mathbb{K} .
- 42. Let \mathbb{F} be a field. Show that if α is algebraic over \mathbb{F} then $\mathbb{F}[\alpha]$ is a field.
- 43. Let $\mathbb{K} \supseteq \mathbb{F}$ be a field extension and let $\alpha \in \mathbb{K}$. Let $f \in \mathbb{F}[x]$ be the minimal polynomial of α . Show that f is irreducible, that $\mathbb{F}(\alpha) = \mathbb{F}[\alpha]$ and that $\mathbb{F}(\alpha)$ has \mathbb{F} -basis $\{1, \alpha, \dots, \alpha^{n-1}\}$, where $n = \deg(f)$.
- 44. The "Theorem of Louiville" states that if $f: \mathbb{C} \to \mathbb{C}$ is holomorphic and bounded then f is constant. Use Louiville's theorem to prove that \mathbb{C} is algebraically closed. (Be sure to give a careful definition of \mathbb{C} .)
- 45. Let \mathbb{F} be a field. Carefully define algebraically closed and the algebraic closure of \mathbb{F} . Show that the algebraic closure of \mathbb{F} exists, is unique, is algebraic over \mathbb{F} and is algebraically closed.
- 46. Show that $\overline{\mathbb{Q}} \neq \mathbb{C}$.
- 47. Let \mathbb{F} be a field and let $J \subseteq \mathbb{F}[x]$. Carefully define the splitting field of J over \mathbb{F} . Show that the splitting field of J over \mathbb{F} exists, is unique, and is algebraic over \mathbb{F} .
- 48. Suppose that E and K are two extensions of F and let $a \in E$ and $b \in K$ be algebraic over F. Prove that $m_{a,F} = m_{b,F}$ if and only if there exists an isomorphism $\varphi \colon F(a) \to F(b)$ such that $\varphi(a) = b$ and $\varphi|_F = \operatorname{id}_F$.
- 49. Let $E = \{a \in R \mid a \text{ is algebraic over } \mathbb{Q}\}$. Show that E is an algebraic extension of \mathbb{Q} but is not a finite extension of \mathbb{Q} .
- 50. Show that the set of algebraic numbers (over \mathbb{Q}) in \mathbb{R} forms a subfield of \mathbb{R} .
- 51. Show that every finite extension is algebraic.
- 52. Let F be a field and $D: F[X] \to F[X]$ the map given by

$$D(a_0 + a_1X + \dots + a_nX) = a_1 + 2a_2X + \dots + a_nX^{n-1}.$$

- (a) (a)] Show that D(fg) = D(f)g + fD(g).
- (b) Suppose that $f \in F[X]$ is irreducible. Show that if $D(f) \neq 0$ then f has no multiple root in any extension field of F.
- (c) Show that if F has characteristic 0 and $f \in F[X]$ is irreducible then f has no repeated roots.
- 53. Let \mathbb{F} be a field and define $D \colon \mathbb{F}[x] \to \mathbb{F}[x]$ by

$$D(a_0 + a_1x + \dots + a_nx^n) = a_1 + 2a_2x + \dots + na_nx^{n-1},$$

where $m = \underbrace{1 + \dots + 1}_{m} \in \mathbb{F}$. (a) Verify that D(fg) = D(f)g + fD(g), for all $f, g \in \mathbb{F}[x]$.

- (b) An element α is called a double root of f if $(x \alpha)^2$ divides f. Prove that α is a double root of f if and only if $f(\alpha) = 0$ and $(Df)(\alpha) = 0$.
- 54. Let $E = \mathbb{Q}(\alpha)$, where $\alpha^3 \alpha^2 + \alpha + 2 = 0$. Express $(\alpha^2 + \alpha + 1)(\alpha^2 \alpha)$ and $(\alpha 1)^{-1}$ in the form $a\alpha^2 + b\alpha + c$ with $a, b, c \in \mathbb{Q}$.
- 55. Let $F \subseteq K$ be a field extension and let $a \in K$. Under which condition do we call a algebraic over F? Under which condition do we call a transcendental over F?
- 56. Let $F \subseteq K$ be a field extension and let $a \in K$. Assume that a is algebraic over F. What is the definition of the irreducible polynomial of a over F?
- 57. Let $F \subseteq K$ be a field extension and let $a \in K$. Assume that F and K are finite fields. Determine (with proof) whether a is algebraic or transcendental.
- 58. Let $p \in \mathbb{Z}_{>0}$ be prime, let $n \in \mathbb{Z}_{>0}$ and let \mathbb{F} be a finite field of size p^n .
 - (a) Show that the map $\varphi \colon \mathbb{F} \to \mathbb{F}$ given by $\varphi(x) = x^p$ is an isomorphism.
 - (b) Show that φ has order n.
 - (c) Show that every automorphism of \mathbb{F} is a power of φ .
- 59. Define what it means to say that an element $a \in \mathbb{E} \supseteq \mathbb{F}$ is algebraic over \mathbb{F} .
- 60. Let F be a field. Define the term splitting field of a polynomial $f \in F[x]$.
- 61. Let F be a field. Let $f \in F[x]$. Show that a splitting field of f exists.
- 62. Show that $\mathbb{Q}(5^{1/3})$ is not the splitting field of any polynomial over \mathbb{Q} .
- 63. Let E and F be fields with F a subfield of E. What does it mean to say that $a \in E$ is algebraic over F?
- 64. Define what it means to say that an element $a \in \mathbb{C}$ is algebraic over \mathbb{Q} .
- 65. Show that the set of real numbers that are algebraic over \mathbb{Q} is a subfield of \mathbb{R} .
- 66. Suppose that $a \in \mathbb{C}$ is algebraic over \mathbb{Q} and let $n = \deg(a, \mathbb{Q})$. Show that there are exactly n injective field homomorphisms $\mathbb{Q}(q) \to \mathbb{C}$.
- 67. Let *E* and *F* be fields with *F* a subfield of *E*. Let $a \in E$ be algebraic over *F*. Denote by F(a) the smallest subfield of *E* that contains *F* and *q*. Prove that $[F(a) : F] = \deg(a, F)$.
- 68. Let *E* and *F* be fields with *F* a subfield of *E*. Let $a \in E$ be algebraic over *F*. Denote by F[a] the smallest subring of *E* that contains both *F* and *a*. Prove that F(a) = F[a].
- 69. Show that $X^2 3$ and $X^2 2X 2$ have the same splitting field K over \mathbb{Q} .
- 70. Let K be the splitting field of $X^2 3$ over \mathbb{Q} . Find $[K : \mathbb{Q}]$.