19.5.3 Algebraic, transcendental, normal, separable and perfect

26. Show that $\alpha=2 \pi i$ is algebraic over \mathbb{R} and transcendental over \mathbb{Q}.
27. Give an example of a field of characteristic p such that the Frobenius map is not an automorphism.
28. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$.
(a) Carefully define what it means for α to be algebraic over \mathbb{F}.
(b) Carefully define what it means for α to be transcendental over \mathbb{F}.
(c) Carefully define what it means for α to be separable over \mathbb{F}.
(d) Carefully define what it means for α to be normal over \mathbb{F}.
(e) Carefully define what it means for α to be Galois over \mathbb{F}.
29. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that if α is algebraic over \mathbb{F} then $\mathbb{F}(\alpha)$ is a finite extension of \mathbb{F}.
30. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$. Show that if α is transcendental over \mathbb{F} then $\mathbb{F}(\alpha)$ is not a finite extension of \mathbb{F}.
31. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields and let $\alpha \in \mathbb{E}$.
(a) Carefully define what it means for α to be algebraic over \mathbb{F}.
(b) Carefully define what it means for α to be transcendental over \mathbb{F}.
(c) Carefully define what it means for α to be separable over \mathbb{F}.
(d) Carefully define what it means for α to be normal over \mathbb{F}.
(e) Carefully define what it means for α to be Galois over \mathbb{F}.
32. Let $\mathbb{E} \supseteq \mathbb{F}$ be an inclusion of fields.
(a) Carefully define what it means for \mathbb{E} to be a finite extension of \mathbb{F}.
(b) Carefully define what it means for \mathbb{E} to be an algebraic extension of \mathbb{F}.
(c) Carefully define what it means for \mathbb{E} to be a separable extension of \mathbb{F}.
(d) Carefully define what it means for \mathbb{E} to be a normal extension of \mathbb{F}.
(e) Carefully define what it means for \mathbb{E} to be a Galois extension of \mathbb{F}.
33. Determine which properties \mathbb{R} / \mathbb{Q} and \mathbb{C} / \mathbb{Q} and \mathbb{R} / \mathbb{Q} have (finite, algebraic, separable, normal, Galois).
34. Show that $2^{\frac{1}{3}}$ is algebraic over \mathbb{Q} and find the minimal polynomial.
35. Show that $\sqrt{3}+\sqrt{2}$ is algebraic over \mathbb{Q} and find the minimal polynomial.
36. Show that $\frac{1}{2}(\sqrt{5}+1)$ is algebraic over \mathbb{Q} and find the minimal polynomial.
37. Show that $\frac{1}{2}(\sqrt{3}-1)$ is algebraic over \mathbb{Q} and find the minimal polynomial.
38. Prove that

$$
\sum_{n \in \mathbb{Z}_{>\geq 0}} 10^{-n!} \quad \text { is transcendental over } \mathbb{Q}
$$

39. Prove that e is transcendental over \mathbb{Q}.
40. Prove that π is transcendental over \mathbb{Q}.
41. Let $\mathbb{K} \supseteq \mathbb{F}$ be an extension. Show that the set of elements of \mathbb{K} that are algebraic over \mathbb{F} is a subfield of \mathbb{K}.
42. Let \mathbb{F} be a field. Show that if α is algebraic over \mathbb{F} then $\mathbb{F}[\alpha]$ is a field.
43. Let $\mathbb{K} \supseteq \mathbb{F}$ be a field extension and let $\alpha \in \mathbb{K}$. Let $f \in \mathbb{F}[x]$ be the minimal polynomial of α. Show that f is irreducible, that $\mathbb{F}(\alpha)=\mathbb{F}[\alpha]$ and that $\mathbb{F}(\alpha)$ has \mathbb{F}-basis $\left\{1, \alpha, \cdots, \alpha^{n-1}\right\}$, where $n=\operatorname{deg}(f)$.
44. The "Theorem of Louiville" states that if $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic and bounded then f is constant. Use Louiville's theorem to prove that \mathbb{C} is algebraically closed. (Be sure to give a careful definition of \mathbb{C}.)
45. Let \mathbb{F} be a field. Carefully define algebraically closed and the algebraic closure of \mathbb{F}. Show that the algebraic closure of \mathbb{F} exists, is unique, is algebraic over \mathbb{F} and is algebraically closed.
46. Show that $\overline{\mathbb{Q}} \neq \mathbb{C}$.
47. Let \mathbb{F} be a field and let $J \subseteq \mathbb{F}[x]$. Carefully define the splitting field of J over \mathbb{F}. Show that the splitting field of J over \mathbb{F} exists, is unique, and is algebraic over \mathbb{F}.
48. Suppose that E and K are two extensions of F and let $a \in E$ and $b \in K$ be algebraic over F. Prove that $m_{a, F}=m_{b, F}$ if and only if there exists an isomorphism $\varphi: F(a) \rightarrow F(b)$ such that $\varphi(a)=b$ and $\left.\varphi\right|_{F}=\operatorname{id}_{F}$.
49. Let $E=\{a \in R \mid a$ is algebraic over $\mathbb{Q}\}$. Show that E is an algebraic extension of \mathbb{Q} but is not a finite extension of \mathbb{Q}.
50. Show that the set of algebraic numbers (over \mathbb{Q}) in \mathbb{R} forms a subfield of \mathbb{R}.
51. Show that every finite extension is algebraic.
52. Let F be a field and $D: F[X] \rightarrow F[X]$ the map given by

$$
D\left(a_{0}+a_{1} X+\cdots+a_{n} X\right)=a_{1}+2 a_{2} X+\cdots n a_{n} X^{n-1}
$$

(a) (a)] Show that $D(f g)=D(f) g+f D(g)$.
(b) Suppose that $f \in F[X]$ is irreducible. Show that if $D(f) \neq 0$ then f has no multiple root in any extension field of F.
(c) Show that if F has characteristic 0 and $f \in F[X]$ is irreducible then f has no repeated roots.
53. Let \mathbb{F} be a field and define $D: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ by

$$
D\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}
$$

where $m=\underbrace{1+\cdots+1}_{m} \in \mathbb{F}$.
(a) Verify that $D(f g)=D(f) g+f D(g)$, for all $f, g \in \mathbb{F}[x]$.
(b) An element α is called a double root of f if $(x-\alpha)^{2}$ divides f. Prove that α is a double root of f if and only if $f(\alpha)=0$ and $(D f)(\alpha)=0$.
54. Let $E=\mathbb{Q}(\alpha)$, where $\alpha^{3}-\alpha^{2}+\alpha+2=0$. Express $\left(\alpha^{2}+\alpha+1\right)\left(\alpha^{2}-\alpha\right)$ and $(\alpha-1)^{-1}$ in the form $a \alpha^{2}+b \alpha+c$ with $a, b, c \in \mathbb{Q}$.
55. Let $F \subseteq K$ be a field extension and let $a \in K$. Under which condition do we call a algebraic over F ? Under which condition do we call a transcendental over F ?
56. Let $F \subseteq K$ be a field extension and let $a \in K$. Assume that a is algebraic over F. What is the definition of the irreducible polynomial of a over F ?
57. Let $F \subseteq K$ be a field extension and let $a \in K$. Assume that F and K are finite fields. Determine (with proof) whether a is algebraic or transcendental.
58. Let $p \in \mathbb{Z}_{>0}$ be prime, let $n \in \mathbb{Z}_{>0}$ and let \mathbb{F} be a finite field of size p^{n}.
(a) Show that the map $\varphi: \mathbb{F} \rightarrow \mathbb{F}$ given by $\varphi(x)=x^{p}$ is an isomorphism.
(b) Show that φ has order n.
(c) Show that every automorphism of \mathbb{F} is a power of φ.
59. Define what it means to say that an element $a \in \mathbb{E} \supseteq \mathbb{F}$ is algebraic over \mathbb{F}.
60. Let F be a field. Define the term splitting field of a polynomial $f \in F[x]$.
61. Let F be a field. Let $f \in F[x]$. Show that a splitting field of f exists.
62. Show that $\mathbb{Q}\left(5^{1 / 3}\right)$ is not the splitting field of any polynomial over \mathbb{Q}.
63. Let E and F be fields with F a subfield of E. What does it mean to say that $a \in E$ is algebraic over F ?
64. Define what it means to say that an element $a \in \mathbb{C}$ is algebraic over \mathbb{Q}.
65. Show that the set of real numbers that are algebraic over \mathbb{Q} is a subfield of \mathbb{R}.
66. Suppose that $a \in \mathbb{C}$ is algebraic over \mathbb{Q} and let $n=\operatorname{deg}(a, \mathbb{Q})$. Show that there are exactly n injective field homomorphisms $\mathbb{Q}(q) \rightarrow \mathbb{C}$.
67. Let E and F be fields with F a subfield of E. Let $a \in E$ be algebraic over F. Denote by $F(a)$ the smallest subfield of E that contains F and q. Prove that $[F(a): F]=\operatorname{deg}(a, F)$.
68. Let E and F be fields with F a subfield of E. Let $a \in E$ be algebraic over F. Denote by $F[a]$ the smallest subring of E that contains both F and a. Prove that $F(a)=F[a]$.
69. Show that $X^{2}-3$ and $X^{2}-2 X-2$ have the same splitting field K over \mathbb{Q}.
70. Let K be the splitting field of $X^{2}-3$ over \mathbb{Q}. Find $[K: \mathbb{Q}]$.

