10.5 Isotropy and nondegeneracy

Let $W \subseteq V$ be a subspace of V. The orthogonal to W is

$$
W^{\perp}=\{v \in V \mid \text { if } w \in W \text { then }\langle v, w\rangle=0\}
$$

The subspace W is nonisotropic if $W \cap W^{\perp}=0$.
Proposition 10.3. A sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ satisfies
(no isotropic vectors condition) If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$.
if and only if it satisfies
(no isotropic subspaces condition) If W is a subspace of V then $W \cap W^{\perp}=0$.
Remark 10.4. Let $V=\mathbb{C}$-span $\left\{e_{1}, e_{2}\right\}$ with symmetric bilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{C}$ with Gram matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { in the basis }\left\{e_{1}, e_{2}\right\}
$$

This form has isotropic vectors since $\left\langle e_{1}, e_{1}\right\rangle=0$. The dual basis to $\left\{e_{1}, e_{2}\right\}$ is the basis $\left\{e_{2}, e_{1}\right\}$. Letting

$$
\begin{aligned}
& b_{1}=\frac{1}{\sqrt{2}}\left(e_{1}+e_{2}\right), \\
& b_{2}=\frac{i}{\sqrt{2}}\left(e_{1}-e_{2}\right),
\end{aligned} \quad \text { then the Gram matrix is } \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

with respect to the basis $\left\{b_{1}, b_{2}\right\}$ and $b_{1}+i b_{2}$ is an isotropic vector.

10.6 Nondegeneracy and dual bases

Let V be a \mathbb{F}-vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$. The form \langle,$\rangle is nondegenerate if$ it satisfies

$$
\text { if } v \in V \text { and } v \neq 0 \text { then there exists } w \in V \text { such that }\langle v, w\rangle \neq 0
$$

An alternative way of stating this condition is to say $V \cap V^{\perp}=0$. Another alternative is to say that the map

$$
\begin{array}{rlllllc}
V & \rightarrow V^{*} \\
v & \mapsto & \varphi_{v}
\end{array} \quad \text { given by } \quad \varphi_{v}: \quad V \quad \rightarrow \quad \mathbb{F}, \begin{array}{ll}
V & \mapsto
\end{array}
$$

is an injective linear transformation.
Let $k \in \mathbb{Z}_{>0}$ and assume that $W \subseteq V$ is a subspace of V with $\operatorname{dim}(W)=k$. Let $\left(w_{1}, \ldots, w_{k}\right)$ be a basis of W. A dual basis to $\left(w_{1}, \ldots, w_{k}\right)$ with respect to \langle,$\rangle is a basis \left(w^{1}, \ldots, w^{k}\right)$ of W such that

$$
\text { if } i, j \in\{1, \ldots, k\} \text { then }\left\langle w^{i}, w_{j}\right\rangle=\delta_{i j} .
$$

Proposition 10.5. Let V be a vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$. Let $W \subseteq V$ be a subspace of V. Assume W is finite dimensional, that $\left(w_{1}, \ldots, w_{k}\right)$ is a basis of W and that G is the Gram matrix of \langle,$\rangle with respect to the basis \left\{w_{1}, \ldots, w_{k}\right\}$. The following are equivalent:
(a) A dual basis to $\left(w_{1}, \ldots, w_{k}\right)$ exists.
(b) G is invertible.
(c) $W \cap W^{\perp}=0$.
(d) The linear transformation

$$
\begin{aligned}
\Psi_{W}: \quad W & \rightarrow W^{*} \\
v & \longmapsto
\end{aligned} \quad \text { given by } \quad \varphi_{v} \quad \text { g }(w)=\langle v, w\rangle,
$$

is an isomorphism.

