10.5 Isotropy and nondegeneracy

Let $W \subseteq V$ be a subspace of V. The orthogonal to W is

$$W^{\perp} = \{ v \in V \mid \text{if } w \in W \text{ then } \langle v, w \rangle = 0 \}.$$

The subspace W is nonisotropic if $W \cap W^{\perp} = 0$.

Proposition 10.3. A sesquilinear form $\langle,\rangle: V \times V \to \mathbb{F}$ satisfies

(no isotropic vectors condition) If $v \in V$ and $\langle v, v \rangle = 0$ then v = 0.

if and only if it satisfies

(no isotropic subspaces condition) If W is a subspace of V then $W \cap W^{\perp} = 0$.

Remark 10.4. Let $V = \mathbb{C}$ -span $\{e_1, e_2\}$ with symmetric bilinear form $\langle, \rangle \colon V \times V \to \mathbb{C}$ with Gram matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{in the basis } \{e_1, e_2\}.$$

This form has isotropic vectors since $\langle e_1, e_1 \rangle = 0$. The dual basis to $\{e_1, e_2\}$ is the basis $\{e_2, e_1\}$. Letting

$$b_1 = \frac{1}{\sqrt{2}}(e_1 + e_2),$$

$$b_2 = \frac{i}{\sqrt{2}}(e_1 - e_2),$$
 then the Gram matrix is $\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$

with respect to the basis $\{b_1, b_2\}$ and $b_1 + ib_2$ is an isotropic vector.

10.6 Nondegeneracy and dual bases

Let V be a \mathbb{F} -vector space with a sesquilinear form $\langle, \rangle \colon V \times V \to \mathbb{F}$. The form \langle, \rangle is *nondegenerate* if it satisfies

if $v \in V$ and $v \neq 0$ then there exists $w \in V$ such that $\langle v, w \rangle \neq 0$.

An alternative way of stating this condition is to say $V \cap V^{\perp} = 0$. Another alternative is to say that the map

is an *injective* linear transformation.

Let $k \in \mathbb{Z}_{>0}$ and assume that $W \subseteq V$ is a subspace of V with $\dim(W) = k$. Let (w_1, \ldots, w_k) be a basis of W. A dual basis to (w_1, \ldots, w_k) with respect to \langle , \rangle is a basis (w^1, \ldots, w^k) of W such that

if $i, j \in \{1, \ldots, k\}$ then $\langle w^i, w_j \rangle = \delta_{ij}$.

Proposition 10.5. Let V be a vector space with a sesquilinear form $\langle, \rangle \colon V \times V \to \mathbb{F}$. Let $W \subseteq V$ be a subspace of V. Assume W is finite dimensional, that (w_1, \ldots, w_k) is a basis of W and that G is the Gram matrix of \langle, \rangle with respect to the basis $\{w_1, \ldots, w_k\}$. The following are equivalent:

(a) A dual basis to (w_1, \ldots, w_k) exists.

(b) G is invertible.

(c) $W \cap W^{\perp} = 0.$

(d) The linear transformation

$$\begin{array}{ccccc} \Psi_W \colon & W & \to & W^* \\ & v & \longmapsto & \varphi_v \end{array} \quad given \ by \qquad \varphi_v(w) = \langle v, w \rangle, \end{array}$$

is an isomorphism.