10.10 Adjoints of linear transformations

Let V be an \mathbb{F} -vector space with a nondegenerate sesquilinear form $\langle,\rangle:V\times V\to\mathbb{F}$. Let $f\colon V\to V$ be a linear transformation.

• The adjoint of f with respect to \langle , \rangle is the linear transformation $f^* \colon V \to V$ determined by

if
$$x, y \in V$$
 then $\langle f(x), y \rangle = \langle x, f^*(y) \rangle$.

• The linear transformation f is self adjoint if f satisfies:

if
$$x, y \in V$$
 then $\langle f(x), y \rangle = \langle x, f(y) \rangle$.

• The linear transformation f is an *isometry* if f satisfies:

if
$$x, y \in V$$
 then $\langle f(x), f(y) \rangle = \langle x, y \rangle$.

• The linear transformation f is normal if $ff^* = f^*f$.

Let $\{w_1, \ldots, w_k\}$ be a basis of W and assume that the dual basis $\{w^1, \ldots, w^k\}$ of W exists. If $w = c_1 w^1 + \cdots + c_k w^k$ then $c_j = \langle w, w_j \rangle$ and so

$$w = \langle w, w_1 \rangle w^1 + \dots + \langle w, w_k \rangle w^k.$$

If $w \in W$ then

$$f^*(w) = \langle f^*(w), w_1 \rangle w^1 + \dots + \langle f^*(w), w_k \rangle w^k = \langle w, f(w_1) \rangle w^1 + \dots + \langle w, f(w_k) \rangle w^k,$$

and this specifies $f^*: W \to W$ in terms of f. Then

f is self adjoint if
$$f = f^*$$
 and f is an isometry if $ff^* = 1$,

HW: Let $V = \mathbb{F}^n$ with basis (e_1, \ldots, e_n) and inner product given by

$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \text{with 1 in the ith row} \quad \text{and} \quad \langle e_i, e_j \rangle = \delta_{ij}.$$

Let $f: V \to V$ be a linear transformation of V and let A be the matrix of f with respect to the basis (e_1, \ldots, e_n) . Show that, with respect to the basis (e_1, \ldots, e_n) ,

the matrix of
$$f^*$$
 is $A^* = \overline{A}^t$.

Since

$$\sum_{i=1}^{n} A^{*}(i,j)e_{i} = f^{*}(e_{j}) = \sum_{i=1}^{n} \langle e_{j}, f(e_{i}) \rangle e_{i} = \sum_{i=1}^{n} \sum_{k=1}^{n} \langle e_{j}, A(k,i)e_{k} \rangle e_{i} = \sum_{i=1}^{n} \overline{A(j,i)}e_{i},$$

then $A^*(i,j) = \overline{A(j,i)}$.