10.11 The Spectral theorem

Let $A \in M_n(\mathbb{C})$ and let $V = \mathbb{C}^n$ with inner product given by

$$\left\langle \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \right\rangle = x_1 \overline{y_1} + \cdots x_n \overline{y_n}.$$
 (10.1)

Let $A \in M_n(\mathbb{C})$.

- The adjoint of A is the matrix $A^* \in M_n(\mathbb{C})$ given by $A^*(i,j) = \overline{A(j,i)}$.
- The matrix A is self adjoint if $A = A^*$.
- The matrix A is unitary if $AA^* = 1$.
- The matrix A is normal if $AA^* = A^*A$.

Write $A^* = \overline{A}^t$. The unitary group is

$$U_n(\mathbb{C}) = \{ U \in M_n(\mathbb{C}) \mid UU^* = 1 \}.$$

Theorem 10.10. Let $V = \mathbb{C}^n$ with inner product given by (17.1). The function

$$\begin{cases} \text{ordered orthonormal bases} \\ (u_1, \dots, u_n) \text{ of } \mathbb{C}^n \end{cases} \qquad \longrightarrow \qquad U_n(\mathbb{C}) \\ (u_1, \dots, u_n) \qquad \longmapsto \qquad U = \begin{pmatrix} | & | \\ u_1 & \cdots & u_n \\ | & | \end{pmatrix} \qquad \text{is a bijection.}$$

The following proposition explains the role of normal matrices.

Proposition 10.11. Let $V = \mathbb{C}^n$ with inner product given by (17.1). Let

 $A \in M_n(\mathbb{C}), \quad \lambda \in \mathbb{C} \quad and \quad V_\lambda = \ker(\lambda - A).$

If $AA^* = A^*A$ then

 V_{λ} is A-invariant, V_{λ}^{\perp} is A-invariant, V_{λ} is A^{*}-invariant and V_{λ}^{\perp} is A^{*}-invariant.

Theorem 10.12. (Spectral theorem)

Let $n \in \mathbb{Z}_{>0}$ and $V = \mathbb{C}^n$ with inner product given by (17.1).

(a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_n(\mathbb{C})$ such that $AA^* = A^*A$. Then there exists a unitary $U \in M_n(\mathbb{C})$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that

$$U^{-1}AU = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$$

(b) Let $f: V \to V$ be a linear transformation such that $ff^* = f^*f$. Then there exists an orthonormal basis (u_1, \ldots, u_n) of V consisting of eigenvectors of f.

HW: Show that if $A \in M_n(\mathbb{C})$ is self adjoint then its eigenvalues are real. **HW**: Show that if $U \in M_n(\mathbb{C})$ is unitary then its eigenvalues have absolute values

HW: Show that if $U \in M_n(\mathbb{C})$ is unitary then its eigenvalues have absolute value 1.