10.11 The Spectral theorem

Let $A \in M_{n}(\mathbb{C})$ and let $V=\mathbb{C}^{n}$ with inner product given by

$$
\left\langle\left(\begin{array}{c}
x_{1} \tag{10.1}\\
\vdots \\
x_{n}
\end{array}\right),\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)\right\rangle=x_{1} \overline{y_{1}}+\cdots x_{n} \overline{y_{n}}
$$

Let $A \in M_{n}(\mathbb{C})$.

- The adjoint of A is the matrix $A^{*} \in M_{n}(\mathbb{C})$ given by $A^{*}(i, j)=\overline{A(j, i)}$.
- The matrix A is self adjoint if $A=A^{*}$.
- The matrix A is unitary if $A A^{*}=1$.
- The matrix A is normal if $A A^{*}=A^{*} A$.

Write $A^{*}=\bar{A}^{t}$. The unitary group is

$$
U_{n}(\mathbb{C})=\left\{U \in M_{n}(\mathbb{C}) \mid U U^{*}=1\right\}
$$

Theorem 10.10. Let $V=\mathbb{C}^{n}$ with inner product given by 17.1. The function

$$
\begin{aligned}
&\left\{\begin{array}{l}
\text { ordered orthonormal bases } \\
\left(u_{1}, \ldots, u_{n}\right) \text { of } \mathbb{C}^{n}
\end{array}\right\} \longrightarrow \\
& U_{n}(\mathbb{C}) \\
&\left(u_{1}, \ldots, u_{n}\right) \longmapsto U=\left(\begin{array}{ccc}
\mid & \mid \\
u_{1} & \cdots & u_{n} \\
\mid & & \mid
\end{array}\right) \quad \text { is a bijection. }
\end{aligned}
$$

The following proposition explains the role of normal matrices.
Proposition 10.11. Let $V=\mathbb{C}^{n}$ with inner product given by (17.1). Let

$$
A \in M_{n}(\mathbb{C}), \quad \lambda \in \mathbb{C} \quad \text { and } \quad V_{\lambda}=\operatorname{ker}(\lambda-A)
$$

If $A A^{*}=A^{*} A$ then

V_{λ} is A-invariant, $\quad V_{\lambda}^{\perp}$ is A-invariant, $\quad V_{\lambda}$ is A^{*}-invariant and $\quad V_{\lambda}^{\perp}$ is A^{*}-invariant.
Theorem 10.12. (Spectral theorem)
Let $n \in \mathbb{Z}_{>0}$ and $V=\mathbb{C}^{n}$ with inner product given by 17.1.
(a) Let $n \in \mathbb{Z}_{>0}$ and $A \in M_{n}(\mathbb{C})$ such that $A A^{*}=A^{*} A$. Then there exists a unitary $U \in M_{n}(\mathbb{C})$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

(b) Let $f: V \rightarrow V$ be a linear transformation such that $f f^{*}=f^{*} f$. Then there exists an orthonormal basis $\left(u_{1}, \ldots, u_{n}\right)$ of V consisting of eigenvectors of f.

HW: Show that if $A \in M_{n}(\mathbb{C})$ is self adjoint then its eigenvalues are real.
HW: Show that if $U \in M_{n}(\mathbb{C})$ is unitary then its eigenvalues have absolute value 1 .

