10.7 Orthogonal projections

Let \mathbb{F} be a field and let V be an \mathbb{F}-vector space. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a sesquilinear form.
Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\operatorname{dim}(W)=k$ and $W \cap W^{\perp}=0$.
Let $\left(w_{1}, \ldots, w_{k}\right)$ be a basis of W and let $\left(w^{1}, \ldots, w^{k}\right)$ be the dual basis of W (which exists by Proposition 16.3). The orthogonal projection onto W is the function

$$
P_{W}: V \rightarrow V \quad \text { given by } \quad P_{W}(v)=\sum_{i=1}^{k}\left\langle v, w_{i}\right\rangle w^{i}
$$

The following proposition shows that P_{W} does not depend on which choice of basis of W is used to construct P_{W}.

Proposition 10.6. (Characterization of orthogonal projection) Let \mathbb{F} be a field and let V be an \mathbb{F} vector space. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a sesquilinear form. Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\operatorname{dim}(W)=k$ and $W \cap W^{\perp}=0$. The orthogonal projection onto W is the unique linear transformation $P: V \rightarrow V$ such that
(1) If $v \in V$ then $P(v) \in W$.
(2) If $v \in V$ and $w \in W$ then $\langle v, w\rangle=\langle P(v), w\rangle$.

10.8 Orthogonal projections produce orthogonal decompositions

Let \mathbb{F} be a field and let V be an \mathbb{F}-vector space. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a sesquilinear form.
Let $k \in \mathbb{Z}_{>0}$ and let W be a subspace of V such that $\operatorname{dim}(W)=k$ and $W \cap W^{\perp}=0$.
The following proposition explains how the orthogonal projection onto W produces the decomposition $V=W \oplus W^{\perp}$.

Theorem 10.7. Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\operatorname{dim}(V)=n$. Let W be a subspace of V such that $W \cap W^{\perp}=0$. Let P_{W} be the orthogonal projection onto W and let $P_{W^{\perp}}=1-P_{W}$. Then

$$
\begin{gathered}
P_{W}^{2}=P_{W}, \quad P_{W^{\perp}}^{2}=P_{W^{\perp}}, \quad P_{W} P_{W^{\perp}}=P_{W^{\perp}} P_{W}=0, \quad 1=P_{W}+P_{W^{\perp}} \\
\operatorname{ker}\left(P_{W}\right)=W^{\perp}, \quad \operatorname{im}\left(P_{W}\right)=W \quad \text { and } \quad V=W \oplus W^{\perp}
\end{gathered}
$$

