10.3 Gram matrix of \langle,$\rangle with respect to a basis B$

Assume $n \in \mathbb{Z}_{>0}$ and $\operatorname{dim}(V)=n$. Let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a bilinear form and let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis of V. The Gram matrix of \langle,$\rangle with respect to the basis B$ is

$$
G_{B} \in M_{n}(\mathbb{F}) \quad \text { given by } \quad G_{B}(i, j)=\left\langle b_{i}, b_{j}\right\rangle
$$

Let $C=\left\{c_{1}, \ldots, c_{n}\right\}$ be another basis of V and let $P_{C B}$ be the change of basis matrix given by

$$
c_{i}=\sum_{i=1}^{n} P_{B C}(j, i) b_{j}, \quad \text { for } i \in\{1, \ldots, n\}
$$

Since

$$
G_{C}(i, j)=\left\langle c_{i}, c_{j}\right\rangle=\sum_{k, l=1}^{n}\left\langle P_{B C}(k, i) b_{k}, P_{B C}(l, j) b_{l}\right\rangle=\sum_{k, l=1}^{n} P_{B C}(k, i) G_{B}(k, l) P_{B C}(l, j)
$$

then

$$
G_{C}=P_{B C}^{t} G_{B} P_{B C}
$$

10.4 Quadratic forms

Let \mathbb{F} be a field, V an \mathbb{F}-vector space and $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ a bilinear form. The quadratic form associated to \langle,$\rangle is the function$

$$
\left\|\|^{2}: V \rightarrow \mathbb{F} \quad \text { given by } \quad\right\| v \|^{2}=\langle v, v\rangle
$$

Theorem 10.1. Let V be a vector space over a field \mathbb{F} and let $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ be a bilinear form. Let $\left\|\|^{2}: V \rightarrow \mathbb{F}\right.$ be the quadratic form associated to \langle,$\rangle .$
(a) (Parallelogram property) If $x, y \in V$ then

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

(b) (Pythagorean theorem) If $x, y \in V$ and $\langle x, y\rangle=0$ and $\langle y, x\rangle=0$ then

$$
\|x\|^{2}+\|y\|^{2}=\|x+y\|^{2}
$$

(c) (Reconstruction) Assume that \langle,$\rangle is symmetric and that 2 \neq 0$ in \mathbb{F}. Let $x, y \in V$. Then

$$
\langle x, y\rangle=\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right)
$$

Theorem 10.2. Let \mathbb{F} be a field with an involution $-\mathbb{F} \rightarrow \mathbb{F}$ such that the fixed field

$$
\mathbb{K}=\{a \in \mathbb{F} \mid a=\bar{a}\} \quad \text { is an ordered field. }
$$

For $a \in \mathbb{K}$ define

$$
|a|^{2}=a \bar{a}
$$

Let V be an \mathbb{K}-vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ such that
(a) If $x, y \in V$ then $\langle y, x\rangle=\overline{\langle x, y\rangle}$.
(b) If $x \in V$ then $\langle x, x\rangle \in \mathbb{K}_{\geq 0}$.

Let $\left\|\|: V \rightarrow \mathbb{F}\right.$ be the corresponding quadratic form and assume that if $a \in \mathbb{K}_{\geq 0}$ then there exists a unique $c \in \mathbb{K}_{\geq 0}$ such that $c^{2}=a$. Then
(c) (Cauchy-Schwarz) If $x, y \in V$ then $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$.
(d) (Triangle inequality) If $x, y \in V$ then $\|x+y\| \leq\|x\|+\|y\|$.

