10.9 Orthonormal bases

10.9.1 Orthonormal sequences

A Hermitian form is a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$ such that
(H) If $v, w \in V$ then $\langle v, w\rangle=\overline{\langle w, v\rangle}$.

An orthonormal sequence in V is a sequence $\left(b_{1}, b_{2}, \ldots\right)$ in V such that

$$
\text { if } i, j \in \mathbb{Z}_{>0} \quad \text { then } \quad\left\langle b_{i}, b_{j}\right\rangle= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

Proposition 10.8. Let V be an \mathbb{F}-vector space with a Hermitian form. An orthonormal sequence $\left(a_{1}, a_{2}, \ldots\right)$ in V is linearly independent.

10.9.2 Gram-Schmidt

Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\operatorname{dim}(V)=n$. An orthonormal basis of V, or self-dual basis of V, is a basis $\left\{u_{1}, \ldots, u_{n}\right\}$ such that

$$
\text { if } i, j \in\{1, \ldots, n\} \quad \text { then } \quad\left\langle u_{i}, u_{j}\right\rangle= \begin{cases}0, & \text { if } i \neq j \\ 1, & \text { if } i=j\end{cases}
$$

An orthogonal basis in V is a basis $\left\{b_{1}, \ldots, b_{n}\right\}$ such that

$$
\text { if } i, j \in\{1, \ldots, n\} \quad \text { and } i \neq j \quad \text { then } \quad\left\langle b_{i}, b_{j}\right\rangle=0
$$

The following theorem guarantees that, in some favourite examples, orthonormal bases exist.
Theorem 10.9. (Gram-Schmidt) Let V be an \mathbb{F}-vector space with a sesquilinear form $\langle\rangle:, V \times V \rightarrow \mathbb{F}$. Assume that \langle,$\rangle is nonisotropic and that \langle$,$\rangle is Hermitian i.e.,$
(1) (Nonisotropy condition) If $v \in V$ and $\langle v, v\rangle=0$ then $v=0$, and
(2) (Hermitian condition) If $v_{1}, v_{2} \in V$ then $\left\langle v_{2}, v_{1}\right\rangle=\overline{\left\langle v_{1}, v_{2}\right\rangle}$.

Let p_{1}, p_{2}, \ldots be a sequence of linear independent elements of V.
(a) Define $b_{1}=p_{1}$ and

$$
b_{n+1}=p_{n+1}-\frac{\left\langle p_{n+1}, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}-\cdots-\frac{\left\langle p_{n+1}, b_{n}\right\rangle}{\left\langle b_{n}, b_{n}\right\rangle} b_{n}, \quad \text { for } n \in \mathbb{Z}_{>0}
$$

Then $\left(b_{1}, b_{2}, \ldots\right)$ is an orthogonal sequence in V.
(b) Assume that \mathbb{F} is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v\rangle \neq 0$. Define

$$
\|v\|=\sqrt{\langle v, v\rangle}, \quad \text { for } v \in V
$$

Let $\left(b_{1}, \ldots, b_{n}\right)$ be an orthogonal basis of V. Define

$$
u_{1}=\frac{b_{1}}{\left\|b_{1}\right\|}, \quad \ldots, \quad u_{n}=\frac{b_{n}}{\left\|b_{n}\right\|}
$$

Then $\left(u_{1}, \ldots, u_{n}\right)$ is an orthonormal basis of V.

