10.9 Orthonormal bases

10.9.1 Orthonormal sequences

A Hermitian form is a sesquilinear form $\langle,\rangle: V \times V \to \mathbb{F}$ such that

(H) If $v, w \in V$ then $\langle v, w \rangle = \overline{\langle w, v \rangle}$.

An orthonormal sequence in V is a sequence $(b_1, b_2, ...)$ in V such that

if
$$i, j \in \mathbb{Z}_{>0}$$
 then $\langle b_i, b_j \rangle = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$

Proposition 10.8. Let V be an \mathbb{F} -vector space with a Hermitian form. An orthonormal sequence (a_1, a_2, \ldots) in V is linearly independent.

10.9.2 Gram-Schmidt

Let $n \in \mathbb{Z}_{>0}$ and let V be an inner product space with $\dim(V) = n$. An orthonormal basis of V, or self-dual basis of V, is a basis $\{u_1, \ldots, u_n\}$ such that

if
$$i, j \in \{1, \dots, n\}$$
 then $\langle u_i, u_j \rangle = \begin{cases} 0, & \text{if } i \neq j, \\ 1, & \text{if } i = j. \end{cases}$

An orthogonal basis in V is a basis $\{b_1, \ldots, b_n\}$ such that

if
$$i, j \in \{1, \ldots, n\}$$
 and $i \neq j$ then $\langle b_i, b_j \rangle = 0$.

The following theorem guarantees that, in some favourite examples, orthonormal bases exist.

Theorem 10.9. (Gram-Schmidt) Let V be an \mathbb{F} -vector space with a sesquilinear form $\langle, \rangle \colon V \times V \to \mathbb{F}$. Assume that \langle, \rangle is nonisotropic and that \langle, \rangle is Hermitian i.e.,

- (1) (Nonisotropy condition) If $v \in V$ and $\langle v, v \rangle = 0$ then v = 0, and
- (2) (Hermitian condition) If $v_1, v_2 \in V$ then $\langle v_2, v_1 \rangle = \overline{\langle v_1, v_2 \rangle}$.

Let p_1, p_2, \ldots be a sequence of linear independent elements of V. (a) Define $b_1 = p_1$ and

$$b_{n+1} = p_{n+1} - \frac{\langle p_{n+1}, b_1 \rangle}{\langle b_1, b_1 \rangle} b_1 - \dots - \frac{\langle p_{n+1}, b_n \rangle}{\langle b_n, b_n \rangle} b_n, \qquad \text{for } n \in \mathbb{Z}_{>0}.$$

Then (b_1, b_2, \ldots) is an orthogonal sequence in V.

(b) Assume that \mathbb{F} is a field in which square roots can be made sense of and that if $v \in V$ and $v \neq 0$ then $\langle v, v \rangle \neq 0$. Define

$$||v|| = \sqrt{\langle v, v \rangle}, \qquad for \ v \in V$$

Let (b_1, \ldots, b_n) be an orthogonal basis of V. Define

$$u_1 = \frac{b_1}{\|b_1\|}, \quad \dots, \quad u_n = \frac{b_n}{\|b_n\|}.$$

Then (u_1, \ldots, u_n) is an orthonormal basis of V.